These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 5277351)

  • 1. On the structure of rhodopsin. 3. A method for determining the spectral absorption maxima of the intermediates following light absorption.
    Buckser S
    Am J Optom Arch Am Acad Optom; 1970 Dec; 47(12):976-82. PubMed ID: 5277351
    [No Abstract]   [Full Text] [Related]  

  • 2. Spectral tuning of rhodopsin and visual cone pigments.
    Zhou X; Sundholm D; Wesołowski TA; Kaila VR
    J Am Chem Soc; 2014 Feb; 136(7):2723-6. PubMed ID: 24422511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bathorhodopsin intermediates from 11-cis-rhodopsin and 9-cis-rhodopsin.
    Spalink JD; Reynolds AH; Rentzepis PM; Sperling W; Applebury ML
    Proc Natl Acad Sci U S A; 1983 Apr; 80(7):1887-91. PubMed ID: 6572950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemical and biochemical properties of chicken blue-sensitive cone visual pigment.
    Imai H; Terakita A; Tachibanaki S; Imamoto Y; Yoshizawa T; Shichida Y
    Biochemistry; 1997 Oct; 36(42):12773-9. PubMed ID: 9335534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circular dichroism of squid rhodopsin and its intermediates.
    Shichida Y; Tokunaga F; Yoshizawa T
    Biochim Biophys Acta; 1978 Dec; 504(3):413-30. PubMed ID: 718881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [New intermediates in the photochemical transformation of rhodopsin].
    Litvin FF; Balashov SP
    Biofizika; 1977; 22(6):1111-4. PubMed ID: 588617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the photobleaching process between 7-cis- and 11-cis-rhodopsins: a unique interaction change between the chromophore and the protein during the lumi-meta I transition.
    Shichida Y; Kandori H; Okada T; Yoshizawa T; Nakashima N; Yoshihara K
    Biochemistry; 1991 Jun; 30(24):5918-26. PubMed ID: 1828372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells.
    Imai H; Imamoto Y; Yoshizawa T; Shichida Y
    Biochemistry; 1995 Aug; 34(33):10525-31. PubMed ID: 7654707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
    Kloppmann E; Becker T; Ullmann GM
    Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption spectra and photochemical reactions in a unique photoactive protein, middle rhodopsin MR.
    Inoue K; Reissig L; Sakai M; Kobayashi S; Homma M; Fujii M; Kandori H; Sudo Y
    J Phys Chem B; 2012 May; 116(20):5888-99. PubMed ID: 22545951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colour dependence of the early receptor potential and late receptor potential in scallop distal photoreceptor.
    Cornwall MC; Gorman AL
    J Physiol; 1983 Jul; 340():307-34. PubMed ID: 6887052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptophan in bovine rhodopsin: its content, spectral properties and environment.
    Rafferty CN; Muellenberg CG; Shichi H
    Biochemistry; 1980 May; 19(10):2145-51. PubMed ID: 7378353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deriving reaction mechanisms from kinetic spectroscopy. Application to late rhodopsin intermediates.
    Szundi I; Lewis JW; Kliger DS
    Biophys J; 1997 Aug; 73(2):688-702. PubMed ID: 9251787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study.
    Miyahara T; Nakatsuji H
    J Phys Chem A; 2019 Mar; 123(9):1766-1784. PubMed ID: 30762358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of the spectral shifts among the early intermediates of the rhodopsin photocycle.
    Campomanes P; Neri M; Horta BA; Röhrig UF; Vanni S; Tavernelli I; Rothlisberger U
    J Am Chem Soc; 2014 Mar; 136(10):3842-51. PubMed ID: 24512648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of thermal noise and spectral sensitivity in Lake Baikal cottoid fish rhodopsins.
    Luk HL; Bhattacharyya N; Montisci F; Morrow JM; Melaccio F; Wada A; Sheves M; Fanelli F; Chang BS; Olivucci M
    Sci Rep; 2016 Dec; 6():38425. PubMed ID: 27934935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absolute absorption spectra of batho- and photorhodopsins at room temperature. Picosecond laser photolysis of rhodopsin in polyacrylamide.
    Kandori H; Shichida Y; Yoshizawa T
    Biophys J; 1989 Sep; 56(3):453-7. PubMed ID: 2790133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iodopsin, a red-sensitive cone visual pigment in the chicken retina.
    Yoshizawa T; Kuwata O
    Photochem Photobiol; 1991 Dec; 54(6):1061-70. PubMed ID: 1775529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetics and thermodynamics of bleaching of rhodopsin in dimyristoylphosphatidylcholine. Identification of meta-I, meta-II, and meta-III intermediates.
    Ryba NJ; Marsh D; Uhl R
    Biophys J; 1993 Jun; 64(6):1801-12. PubMed ID: 8396448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flash spectrophotometric identification of a fourth rhodopsin-like pigment in Halobacterium halobium.
    Tomioka H; Takahashi T; Kamo N; Kobatake Y
    Biochem Biophys Res Commun; 1986 Sep; 139(2):389-95. PubMed ID: 3767969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.