These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 5285395)

  • 1. Effects of some metabolites of hemolytic drugs on young and old, normal and G-6-PD-deficient human erythrocytes.
    Fraser IM; Tilton BE; Vesell ES
    Ann N Y Acad Sci; 1971 Jul; 179():644-53. PubMed ID: 5285395
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of drugs and drug metabolites on erythrocytes from normal and glucose-6-phosphate dehydrogenase-deficient individuals.
    Fraser IM; Vesell ES
    Ann N Y Acad Sci; 1968 Jul; 151(2):777-94. PubMed ID: 4391843
    [No Abstract]   [Full Text] [Related]  

  • 3. Reduction of oxidized glutathione in normal and glucose-6-phosphate dehydrogenase deficient erythrocytes and their hemolysates.
    Rieber EE; Jaffé ER
    Blood; 1970 Feb; 35(2):166-72. PubMed ID: 5414698
    [No Abstract]   [Full Text] [Related]  

  • 4. Alterations in normal and G-6-PD deficient human erythrocytes of various ages after exposure to metabolites of hemolytic drugs.
    Fraser IM; Tilton BE; Vesell ES
    Pharmacology; 1971; 5(3):173-87. PubMed ID: 5119006
    [No Abstract]   [Full Text] [Related]  

  • 5. Glucose-6-phosphate dehydrogenase deficiency: mechanisms of drug-induced hemolysis.
    Hochstein P
    Exp Eye Res; 1971 May; 11(3):389-95. PubMed ID: 4941679
    [No Abstract]   [Full Text] [Related]  

  • 6. Drug-induced hemolysis: biochemical considerations.
    Shahidi NT
    Birth Defects Orig Artic Ser; 1970 Jun; 6(2):9-15. PubMed ID: 5522339
    [No Abstract]   [Full Text] [Related]  

  • 7. Understanding the mechanisms for metabolism-linked hemolytic toxicity of primaquine against glucose 6-phosphate dehydrogenase deficient human erythrocytes: evaluation of eryptotic pathway.
    Ganesan S; Chaurasiya ND; Sahu R; Walker LA; Tekwani BL
    Toxicology; 2012 Mar; 294(1):54-60. PubMed ID: 22330256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of methyl oleate hydroperoxide, a possible toxic ozone intermediate, on human normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Williams P; Calabrese EJ; Moore GS
    Ecotoxicol Environ Saf; 1983 Apr; 7(2):242-8. PubMed ID: 6851934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of the dorset sheep as a predictive animal model for the response of glucose-6-phosphate dehydrogenase-deficient human erythrocytes to a proposed systemic toxic ozone intermediate, methyl oleate ozonide.
    Calabrese EJ; Williams PS; Moore GS
    Ecotoxicol Environ Saf; 1983 Aug; 7(4):416-22. PubMed ID: 6617568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A methemoglobin-dependent and plasma-stimulated experimental model of oxidative hemolysis.
    Benatti U; Morelli A; Damiani G; De Flora A
    Biochem Biophys Res Commun; 1982 Jun; 106(4):1183-90. PubMed ID: 6810891
    [No Abstract]   [Full Text] [Related]  

  • 11. Irradiation shortens the survival time of red cells deficient in glucose-6-phosphate dehydrogenase.
    Westerman MP; Wald N; Diloy-Puray M
    Radiat Res; 1980 Mar; 81(3):473-7. PubMed ID: 7360895
    [No Abstract]   [Full Text] [Related]  

  • 12. The in vitro action of dapsone and its derivatives on normal and G6PD-deficient red cells.
    Scott GL; Rasbridge MR
    Br J Haematol; 1973 Mar; 24(3):307-17. PubMed ID: 4713632
    [No Abstract]   [Full Text] [Related]  

  • 13. Hemolysis by diphenylsulfones: comparative effects of DDS and hydroxylamine-DDS.
    Glader BE; Conrad ME
    J Lab Clin Med; 1973 Feb; 81(2):267-72. PubMed ID: 4683425
    [No Abstract]   [Full Text] [Related]  

  • 14. Development of a novel mouse model of severe glucose-6-phosphate dehydrogenase (G6PD)-deficiency for in vitro and in vivo assessment of hemolytic toxicity to red blood cells.
    Ko CH; Li K; Li CL; Ng PC; Fung KP; James AE; Wong RP; Gu GJ; Fok TF
    Blood Cells Mol Dis; 2011 Oct; 47(3):176-81. PubMed ID: 21839656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methemoglobin reduction and the inactive X hypothesis.
    Stamatoyannopoulos G; Papayannopoulou T; Bakopoulos C; Motulsky AG
    Am J Hum Genet; 1966 Sep; 18(5):417-23. PubMed ID: 5927285
    [No Abstract]   [Full Text] [Related]  

  • 16. Primaquine sensitivity in Caucasians: hemolytic reactions induced by primaquine in G-6-PD deficient subjects.
    George JN; Sears DA; McCurdy PR; Conrad ME
    J Lab Clin Med; 1967 Jul; 70(1):80-93. PubMed ID: 6027097
    [No Abstract]   [Full Text] [Related]  

  • 17. Low erythrocyte glucose-6-phosphate dehydrogenase (G-6-PD) activity and susceptibility to carbaryl-induced methemoglobin formation and glutathione depletion.
    Calabrese EJ; Geiger CP
    Bull Environ Contam Toxicol; 1986 Apr; 36(4):506-9. PubMed ID: 3083896
    [No Abstract]   [Full Text] [Related]  

  • 18. Glucose-6-phosphate dehydrogenase in vitro correlated with in vivo activity and reticulocytosis.
    Brewster MA; Quittner H; Moriarity M
    Ann Clin Lab Sci; 1977; 7(4):325-8. PubMed ID: 20030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of metabolites of primaquine and acetanilid on normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Fraser IM; Vesell ES
    J Pharmacol Exp Ther; 1968 Jul; 162(1):155-65. PubMed ID: 5656594
    [No Abstract]   [Full Text] [Related]  

  • 20. [Glutathione reduction in erythrocytes of healthy persons and enzyme defect carriers. Use of the azoester test by Kosower et al. in glucose-6-P-dehydrogenase and glutathione reductase deficiency].
    Waller HD; Benöhr HC; Heuer B; Nerke O
    Klin Wochenschr; 1970 Jan; 48(2):79-85. PubMed ID: 5521216
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.