BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 528862)

  • 1. Development of the tibiotarsus in the chick embryo: biosynthetic activities of histologically distinct regions.
    Stocum DL; Davis RM; Leger M; Conrad HE
    J Embryol Exp Morphol; 1979 Dec; 54():155-70. PubMed ID: 528862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chondroitin sulfate and electron lucent bodies in the pericellular rim about unshrunken hypertrophied chondrocytes of chick long bone.
    Kashiwa HK; Luchtel DL; Park HZ
    Anat Rec; 1975 Nov; 183(3):359-72. PubMed ID: 54007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of bone and marrow on cartilage hypertrophy and degradation during 30-day serum-free culture of the embryonic chick tibia.
    Cole AA; Luchene LJ; Linsenmayer TF; Schmid TM
    Dev Dyn; 1992 Mar; 193(3):277-85. PubMed ID: 1600246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the morphological, histochemical and biochemical features of embryonic chick sternal chondrocytes in vivo with chondrocytes cultured in three-dimensional collagen gels.
    McClure J; Bates GP; Rowston H; Grant ME
    Bone Miner; 1988 Jan; 3(3):235-47. PubMed ID: 3061535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick.
    Fang J; Hall BK
    Dev Biol; 1996 Dec; 180(2):701-12. PubMed ID: 8954738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased cell diameter precedes chondrocyte terminal differentiation, whereas cell-matrix attachment complex proteins appear constant.
    Hirsch MS; Cook SC; Killiany R; Hartford Svoboda KK
    Anat Rec; 1996 Mar; 244(3):284-96. PubMed ID: 8742695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Chondrocyte differentiation and bone growth during the development of the cartilaginous skeleton of chickens].
    Zhitnikov AIa
    Arkh Anat Gistol Embriol; 1979 Jul; 77(7):72-81. PubMed ID: 485868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels.
    Kawasaki K; Ochi M; Uchio Y; Adachi N; Matsusaki M
    J Cell Physiol; 1999 May; 179(2):142-8. PubMed ID: 10199553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations of chondroitin sulfate synthesized by chick embryo cartilage cultured in the presence of 6-aminonicotinamide.
    Seegmiller RE; Horwitz AL; Dorfman A
    J Embryol Exp Morphol; 1980 Oct; 59():207-16. PubMed ID: 6452486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell cycle analysis of proliferative zone chondrocytes in growth plates elongating at different rates.
    Wilsman NJ; Farnum CE; Green EM; Lieferman EM; Clayton MK
    J Orthop Res; 1996 Jul; 14(4):562-72. PubMed ID: 8764865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondrogenic differentiation in chick embryo osteoblast cultures.
    Manduca P; Descalzi Cancedda F; Cancedda R
    Eur J Cell Biol; 1992 Apr; 57(2):193-201. PubMed ID: 1511696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of embryonic growth plate in the absence of functioning skeletal muscle.
    Germiller JA; Goldstein SA
    J Orthop Res; 1997 May; 15(3):362-70. PubMed ID: 9246082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type X collagen degradation in long-term serum-free culture of the embryonic chick tibia following production of active collagenase and gelatinase.
    Cole AA; Boyd T; Luchene L; Kuettner KE; Schmid TM
    Dev Biol; 1993 Oct; 159(2):528-34. PubMed ID: 8405676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes in the large proteoglycan in differentiating chondrocytes from the chick embryo tibiotarsus.
    Shaklee PN; Conrad HE
    J Biol Chem; 1985 Dec; 260(30):16064-7. PubMed ID: 4066703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secretion of chondroitin SO4 by monolayer cultures of chick embryo chondrocytes.
    Kim JJ; Conrad HE
    J Biol Chem; 1980 Feb; 255(4):1586-97. PubMed ID: 6243643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential synthesis of cartilage and bone marker proteins during transdifferentiation of mouse Meckel's cartilage chondrocytes in vitro.
    Ishizeki K; Hiraki Y; Kubo M; Nawa T
    Int J Dev Biol; 1997 Feb; 41(1):83-9. PubMed ID: 9074940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletogenesis in insulin-treated chick embryos. II. Histochemical observations, with particular reference to the tibiotarsus.
    Rabinovitch AL; Gibson MA
    Teratology; 1972 Aug; 6(1):51-69. PubMed ID: 4262523
    [No Abstract]   [Full Text] [Related]  

  • 18. Properties of cultured chondrocytes obtained from histologically distinct zones of the chick embryo tibiotarsus.
    Kim JJ; Conrad HE
    J Biol Chem; 1977 Nov; 252(22):8292-9. PubMed ID: 914872
    [No Abstract]   [Full Text] [Related]  

  • 19. In vitro differentiation of mouse embryo chondrocytes: requirement for ascorbic acid.
    Dozin B; Quarto R; Campanile G; Cancedda R
    Eur J Cell Biol; 1992 Aug; 58(2):390-4. PubMed ID: 1425775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of chondroitin sulfate on aggrecan isolated from bovine tibial and costochondral growth plates.
    Deutsch AJ; Midura RJ; Plaas AH
    J Orthop Res; 1995 Mar; 13(2):230-9. PubMed ID: 7722760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.