These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 5289062)

  • 1. Variation in acid phosphatase distribution during developmental stages of the osteoclast.
    Goshi N; Scott BL
    J Dent Res; 1971; 50(6):1500-1. PubMed ID: 5289062
    [No Abstract]   [Full Text] [Related]  

  • 2. A discrepancy between measurements of bone resorption in vivo and in vitro in newborn osteopetrotic rats.
    Marks SC
    Am J Anat; 1974 Nov; 141(3):329-39. PubMed ID: 4447075
    [No Abstract]   [Full Text] [Related]  

  • 3. Histochemical and ultrastructural studies of cartilage resorption and acid phosphatase activity during antler growth in fallow deer (Dama dama).
    Szuwart T; Kierdorf H; Kierdorf U; Clemen G
    Anat Rec; 2002 Sep; 268(1):66-72. PubMed ID: 12209566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A scrutiny of matrix metalloproteinases in osteoclasts: evidence for heterogeneity and for the presence of MMPs synthesized by other cells.
    Andersen TL; del Carmen Ovejero M; Kirkegaard T; Lenhard T; Foged NT; Delaissé JM
    Bone; 2004 Nov; 35(5):1107-19. PubMed ID: 15542036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of osteoclasts: in situ versus smear specimens.
    Ries WL; Gong JK
    Anat Rec; 1982 Jun; 203(2):221-32. PubMed ID: 7114495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of electromagnetic stimulation on the functional responsiveness of isolated rat osteoclasts.
    Shankar VS; Simon BJ; Bax CM; Pazianas M; Moonga BS; Adebanjo OA; Zaidi M
    J Cell Physiol; 1998 Sep; 176(3):537-44. PubMed ID: 9699506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein tyrosine phosphatases in osteoclast differentiation, adhesion, and bone resorption.
    Granot-Attas S; Elson A
    Eur J Cell Biol; 2008 Sep; 87(8-9):479-90. PubMed ID: 18342392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of a Gs-like G protein in the osteoclast inhibits bone resorption but enhances tartrate-resistant acid phosphatase secretion.
    Moonga BS; Pazianas M; Alam AS; Shankar VS; Huang CL; Zaidi M
    Biochem Biophys Res Commun; 1993 Jan; 190(2):496-501. PubMed ID: 8427592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the osteoclast in cranial suture waveform patterning.
    Byron CD
    Anat Rec A Discov Mol Cell Evol Biol; 2006 May; 288(5):552-63. PubMed ID: 16604542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoclast activation: potent inhibition by the bisphosphonate alendronate through a nonresorptive mechanism.
    Owens JM; Fuller K; Chambers TJ
    J Cell Physiol; 1997 Jul; 172(1):79-86. PubMed ID: 9207928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula.
    Shorey S; Heersche JN; Manolson MF
    Bone; 2004 Oct; 35(4):909-17. PubMed ID: 15454098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The majority of osteoclasts require mRNA and protein synthesis for bone resorption in vitro.
    Hall TJ; Schaeublin M; Chambers TJ
    Biochem Biophys Res Commun; 1993 Sep; 195(3):1245-53. PubMed ID: 8216256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-bound carbonic anhydrases in osteoclasts.
    Riihonen R; Supuran CT; Parkkila S; Pastorekova S; Väänänen HK; Laitala-Leinonen T
    Bone; 2007 Apr; 40(4):1021-31. PubMed ID: 17291844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue reaction and recovery following experimental tooth movement.
    Kronman JH
    Angle Orthod; 1971 Apr; 41(2):125-32. PubMed ID: 4929925
    [No Abstract]   [Full Text] [Related]  

  • 15. The tartrate-resistant purple acid phosphatase of bone osteoclasts--a protein phosphatase with multivalent substrate specificity and regulation.
    Andersson G; Ek-Rylander B
    Acta Orthop Scand Suppl; 1995 Oct; 266():189-94. PubMed ID: 8553850
    [No Abstract]   [Full Text] [Related]  

  • 16. The regulation of cathepsin K gene expression.
    Troen BR
    Ann N Y Acad Sci; 2006 Apr; 1068():165-72. PubMed ID: 16831915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in enzyme expression related to differentiation and regulatory factors: the acid phosphatase of osteoclasts and other macrophages.
    Moss DW
    Clin Chim Acta; 1992 Jul; 209(1-2):131-8. PubMed ID: 1395035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histochemical study of acid phosphatase activity in the osteoclast and ameloblast in the young rat.
    Kurahashi Y; Tanaka S; Takakashi R; Yoshiki S
    Bull Tokyo Dent Coll; 1972 Feb; 13(1):1-8. PubMed ID: 4501645
    [No Abstract]   [Full Text] [Related]  

  • 19. Histiocytic activity in the otosclerotic bone.
    Bretlau P; Causse J; Jorgensen MB; Chevance LG
    Arch Klin Exp Ohren Nasen Kehlkopfheilkd; 1971; 198(3):301-16. PubMed ID: 5569459
    [No Abstract]   [Full Text] [Related]  

  • 20. [Modified methods for detection of acid phosphatase in mineralized tissue of white rat teeth].
    Witek E; Romankiewicz-Woźniczko G
    Czas Stomatol; 1976 Jan; 29(1):1-7. PubMed ID: 1060533
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.