These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 5289710)

  • 41. Spinal cord projections to the cerebellum in the mouse.
    Sengul G; Fu Y; Yu Y; Paxinos G
    Brain Struct Funct; 2015 Sep; 220(5):2997-3009. PubMed ID: 25009313
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distribution of corticotropin-releasing factor in the cerebellum and precerebellar nuclei of the opossum: a study utilizing immunohistochemistry, in situ hybridization histochemistry, and receptor autoradiography.
    Cummings SL; Young WS; Bishop GA; De Souza EB; King JS
    J Comp Neurol; 1989 Feb; 280(4):501-21. PubMed ID: 2785124
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of 5 spino-olivocerebellar paths ascending through the ventral funiculus of the cord.
    Oscarsson O; Sjölund B
    Brain Res; 1974 Apr; 69(2):331-5. PubMed ID: 4823096
    [No Abstract]   [Full Text] [Related]  

  • 44. Direct fastigiospinal fibers in the cat.
    Fukushima K; Peterson BW; Uchino Y; Coulter JD; Wilson VJ
    Brain Res; 1977 May; 126(3):538-42. PubMed ID: 861735
    [No Abstract]   [Full Text] [Related]  

  • 45. On the organization of cerebellar efferent pathways in the nurse shark (Ginglymostoma cirratum).
    Ebbesson SO; Campbell CB
    J Comp Neurol; 1973 Dec; 152(3):233-54. PubMed ID: 4130103
    [No Abstract]   [Full Text] [Related]  

  • 46. Spinocerebellar projections in the pigeon with special reference to the neck region of the body.
    Necker R
    J Comp Neurol; 2001 Jan; 429(3):403-18. PubMed ID: 11116228
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The organization of reticulo-olivo-cerebellar circuits in the North American opossum.
    Martin GF; Beattie MS; Hughes HC; Linauts M; Panneton M
    Brain Res; 1977 Dec; 137(2):253-66. PubMed ID: 589453
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The origin of brain stem-spinal projections at different stages of development in the North American opossum.
    Cabana T; Martin GF
    Brain Res; 1981 Aug; 254(1):163-8. PubMed ID: 7272768
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The lateral reticular nucleus of the opossum (Didelphis virginiana). I. Conformation, cytology and synaptology.
    Andrezik JA; King JS
    J Comp Neurol; 1977 Jul; 174(1):119-50. PubMed ID: 864031
    [No Abstract]   [Full Text] [Related]  

  • 50. Evidence for GAP-43 within descending spinal axons in the North American opossum, Didelphis virginiana.
    Zou XC; Ho RH; Wang XM; Martin GF
    Brain Behav Evol; 1996; 47(4):200-13. PubMed ID: 9156783
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The rubro-spinal tract of the opposum (Didelphis virginiana).
    Martin GF; Dom R
    J Comp Neurol; 1970 Jan; 138(1):19-30. PubMed ID: 5412717
    [No Abstract]   [Full Text] [Related]  

  • 52. The origin of spinocerebellar pathways. II. The nucleus centrobasalis of the cervical enlargement and the nucleus dorsalis of the thoracolumbar spinal cord.
    Petras JM; Cummings JF
    J Comp Neurol; 1977 Jun; 173(4):693-716. PubMed ID: 266509
    [No Abstract]   [Full Text] [Related]  

  • 53. Two different types of thalamocortical projections to a single cortical area in mammals.
    Killackey HP; Ebner FF
    Brain Behav Evol; 1972; 6(1):141-69. PubMed ID: 4662197
    [No Abstract]   [Full Text] [Related]  

  • 54. Distribution and organization of spino-reticular afferents in the brain stem of rat.
    Petrovicky P
    J Hirnforsch; 1976; 17(2):127-35. PubMed ID: 965723
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence for growth of supraspinal axons through the lesion after transection of the thoracic spinal cord in the developing opossum Didelphis virginiana.
    Wang XM; Terman JR; Martin GF
    J Comp Neurol; 1996 Jul; 371(1):104-15. PubMed ID: 8835721
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of catecholaminergic projections to the spinal cord in the North American opossum, Didelphis virginiana.
    Pindzola RR; Ho RH; Martin GF
    J Comp Neurol; 1990 Apr; 294(3):399-417. PubMed ID: 1971285
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Afferents to the cerebellar cortex in the cat: evidence for an intrinsic pathway leading from the deep nuclei to the cortex.
    Gould BB; Graybiel AM
    Brain Res; 1976 Jul; 110(3):601-11. PubMed ID: 947474
    [No Abstract]   [Full Text] [Related]  

  • 58. Enkephalin-immunoreactive fastigial neurons in the rat cerebellum project to upper cervical cord segments.
    Ikeda M; Houtani T; Nakagawa H; Baba K; Kondoh A; Ueyama T; Yamamoto T; Gemba H; Sugimoto T
    Brain Res; 1995 Sep; 690(2):225-30. PubMed ID: 8535840
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trigeminal primary afferent projections to "non-trigeminal" areas of the rat central nervous system.
    Marfurt CF; Rajchert DM
    J Comp Neurol; 1991 Jan; 303(3):489-511. PubMed ID: 1706735
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physiopathology of the cerebellum in the monkey. I. Origin of cerebellar afferent nervous fibers from the spinal cord and brain stem.
    Lafleur J; de Lean J; Poirier LJ
    J Neurol Sci; 1974 Aug; 22(4):471-90. PubMed ID: 4211162
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.