These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 529026)

  • 1. Drug elimination interactions: analysis using a mathematical model.
    Luecke RH; Wosilait WD
    J Pharmacokinet Biopharm; 1979 Dec; 7(6):629-41. PubMed ID: 529026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological flow model for drug elimination interactions in the rat.
    Luecke RH; Thomason LE; Wosilait WD
    Comput Programs Biomed; 1980 Apr; 11(2):88-98. PubMed ID: 7389320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A program to simulate drug elimination interactions: warfarin and BSP - an illustrative example.
    Leucke RH; Wosilait WD
    Comput Programs Biomed; 1978 Mar; 8(1):35-43. PubMed ID: 639500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Michaelis-Menten metabolite formation kinetics: equations relating area under the curve and metabolite recovery to the administered dose.
    Chow AT; Jusko WJ
    J Pharm Sci; 1990 Oct; 79(10):902-6. PubMed ID: 2280360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcomputer program for interactions in drug elimination in the rat.
    Lewis JC; Luecke RH; Wosilait W
    Comput Methods Programs Biomed; 1988; 26(2):137-43. PubMed ID: 3359764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Michaelis-Menten elimination kinetics: areas under curves, steady-state concentrations, and clearances for compartment models with different types of input.
    Wagner JG; Szpunar GJ; Ferry JJ
    Biopharm Drug Dispos; 1985; 6(2):177-200. PubMed ID: 4005396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New and simple method to predict dosage of drugs obeying simple Michaelis-Menten elimination kinetics and to distinguish such kinetics from simple first order and from parallel Michaelis-Menten and first order kinetics.
    Wagner JG
    Ther Drug Monit; 1985; 7(4):377-86. PubMed ID: 4082237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mathematical study on characteristics of the average steady-state for drugs obeying Michaelis-Menten elimination kinetics].
    Zhou HW
    Zhongguo Yao Li Xue Bao; 1986 Sep; 7(5):385-9. PubMed ID: 2954407
    [No Abstract]   [Full Text] [Related]  

  • 9. Time to reach steady state and prediction of steady-state concentrations for drugs obeying Michaelis-Menten elimination kinetics.
    Wagner JG
    J Pharmacokinet Biopharm; 1978 Jun; 6(3):209-25. PubMed ID: 671227
    [No Abstract]   [Full Text] [Related]  

  • 10. Sulfobromophthalein metabolism in isolated perfused rat liver. Factors determining the applicability of the model.
    CĂ©spedes JM; RodrĂ­guez Garay EA
    Acta Physiol Lat Am; 1979; 29(4-5):207-15. PubMed ID: 263170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational problems of compartment models with Michaelis-Menten-type elimination.
    Metzler CM; Tong DD
    J Pharm Sci; 1981 Jul; 70(7):733-7. PubMed ID: 7264916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Closed form solutions and dominant elimination pathways of simultaneous first-order and Michaelis-Menten kinetics.
    Wu X; Li J; Nekka F
    J Pharmacokinet Pharmacodyn; 2015 Apr; 42(2):151-61. PubMed ID: 25678215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clonidine effects on disposition of xenobiotics in rats: inhibited elimination of flow-limited but not extraction-limited agents.
    Ben-Zvi Z; Hurwitz A
    Br J Pharmacol; 1988 May; 94(1):97-102. PubMed ID: 3401645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel method of estimating volume of distribution of a drug obeying Michaelis-Menten elimination kinetics.
    Lin YJ; Weidler DJ; Garg DC; Wagner JG
    J Pharmacokinet Biopharm; 1978 Jun; 6(3):197-207. PubMed ID: 671226
    [No Abstract]   [Full Text] [Related]  

  • 15. Representation and interpretation of drug displacement interactions.
    Schary WL; Aarons LJ; Rowland M
    Biochem Pharmacol; 1978 Jan; 27(1):139-44. PubMed ID: 619901
    [No Abstract]   [Full Text] [Related]  

  • 16. On the identification of Michaelis-Menten elimination parameters from a single dose-response curve.
    Godfrey KR; Fitch WR
    J Pharmacokinet Biopharm; 1984 Apr; 12(2):193-221. PubMed ID: 6491901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical analysis and drug exposure evaluation of pharmacokinetic models with endogenous production and simultaneous first-order and Michaelis-Menten elimination: the case of single dose.
    Wu X; Nekka F; Li J
    J Pharmacokinet Pharmacodyn; 2018 Oct; 45(5):693-705. PubMed ID: 29987574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Numerical simulation of the blood kinetics of BSP. Treatment by identification of a mathematical model].
    Gaillot J; Bieder A; Boisvieux JF
    Therapie; 1975; 30(1):33-40. PubMed ID: 1135781
    [No Abstract]   [Full Text] [Related]  

  • 19. Pharmacokinetic drug interactions.
    Eichelbaum M
    J Clin Pharmacol; 1986; 26(6):469-73. PubMed ID: 3090111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling fractal-like drug elimination kinetics using an interacting random-walk model.
    Marsh RE; Riauka TA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031902. PubMed ID: 17500721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.