These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 529046)
1. Sustained drug delivery systems II: Factors affecting release rates from poly(epsilon-caprolactone) and related biodegradable polyesters. Pitt CG; Gratzl MM; Jeffcoat AR; Zweidinger R; Schindler A J Pharm Sci; 1979 Dec; 68(12):1534-8. PubMed ID: 529046 [TBL] [Abstract][Full Text] [Related]
2. Sustained drug delivery systems. I. The permeability of poly(epsilon-caprolactone), poly(DL-lactic acid), and their copolymers. Pitt CG; Jeffcoat AR; Zweidinger RA; Schindler A J Biomed Mater Res; 1979 May; 13(3):497-507. PubMed ID: 438232 [TBL] [Abstract][Full Text] [Related]
3. In vitro evaluation of sustained drug release from biodegradable elastomer. Wada R; Hyon SH; Nakamura T; Ikada Y Pharm Res; 1991 Oct; 8(10):1292-6. PubMed ID: 1796048 [TBL] [Abstract][Full Text] [Related]
4. Colchicine encapsulation within poly(ethylene glycol)-coated poly(lactic acid)/poly(epsilon-caprolactone) microspheres-controlled release studies. Das GS; Rao GH; Wilson RF; Chandy T Drug Deliv; 2000; 7(3):129-38. PubMed ID: 10989913 [TBL] [Abstract][Full Text] [Related]
5. Controlled protein release from electrospun biodegradable fiber mesh composed of poly(epsilon-caprolactone) and poly(ethylene oxide). Kim TG; Lee DS; Park TG Int J Pharm; 2007 Jun; 338(1-2):276-83. PubMed ID: 17321084 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable polyesters for controlled release of trypanocidal drugs: in vitro and in vivo studies. Lemmouchi Y; Schacht E; Kageruka P; De Deken R; Diarra B; Diall O; Geerts S Biomaterials; 1998 Oct; 19(20):1827-37. PubMed ID: 9855183 [TBL] [Abstract][Full Text] [Related]
7. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers. Jackson JK; Hung T; Letchford K; Burt HM Int J Pharm; 2007 Sep; 342(1-2):6-17. PubMed ID: 17555895 [TBL] [Abstract][Full Text] [Related]
8. Recent Advances in Application of Poly-Epsilon-Caprolactone and its Derivative Copolymers for Controlled Release of Anti-Tumor Drugs. Sun Z; Duan R; Xing D; Pang X; Li Z; Chen X Curr Cancer Drug Targets; 2017; 17(5):445-455. PubMed ID: 28067177 [TBL] [Abstract][Full Text] [Related]
9. Thermosensitive β-cyclodextrin modified poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) micelles prolong the anti-inflammatory effect of indomethacin following local injection. Wei X; Lv X; Zhao Q; Qiu L Acta Biomater; 2013 Jun; 9(6):6953-63. PubMed ID: 23416577 [TBL] [Abstract][Full Text] [Related]
10. Effect of the molecular weight of poly(epsilon-caprolactone-co-DL-lactide) on toremifene citrate release from copolymer/silica xerogel composites. Rich J; Kortesuo P; Ahola M; Yli-Urpo A; Kiesvaara J; Seppälä J Int J Pharm; 2001 Jan; 212(1):121-30. PubMed ID: 11165827 [TBL] [Abstract][Full Text] [Related]
11. Optimized polymer coating for magnesium alloy-based bioresorbable scaffolds for long-lasting drug release and corrosion resistance. Xu W; Yagoshi K; Koga Y; Sasaki M; Niidome T Colloids Surf B Biointerfaces; 2018 Mar; 163():100-106. PubMed ID: 29284158 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable drug delivery systems based on aliphatic polyesters: application to contraceptives and narcotic antagonists. Pitt CG; Marks TA; Schindler A NIDA Res Monogr; 1981; 28():232-53. PubMed ID: 6791007 [TBL] [Abstract][Full Text] [Related]
13. Development of biodegradable polyesters with various microstructures for highly controlled release of epirubicin and cyclophosphamide. Żółtowska K; Piotrowska U; Oledzka E; Luchowska U; Sobczak M; Bocho-Janiszewska A Eur J Pharm Sci; 2017 Jan; 96():440-448. PubMed ID: 27742595 [TBL] [Abstract][Full Text] [Related]
14. Controlled release of newer quinolones from biodegradable systems based on poly(lactic acid). Andreopoulos AG J Biomater Appl; 1995 Oct; 10(2):163-70. PubMed ID: 8618209 [TBL] [Abstract][Full Text] [Related]
15. A poly(ε-caprolactone) device for sustained release of an anti-glaucoma drug. Natu MV; Gaspar MN; Ribeiro CA; Correia IJ; Silva D; de Sousa HC; Gil MH Biomed Mater; 2011 Apr; 6(2):025003. PubMed ID: 21293056 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of poly (ϵ-caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation. Zhang X; Zhang C; Zhang W; Meng S; Liu D; Wang P; Guo J; Li J; Guan Y; Yang D Drug Dev Ind Pharm; 2015 Feb; 41(2):342-52. PubMed ID: 24320881 [TBL] [Abstract][Full Text] [Related]
17. Polyester-based microparticles of different hydrophobicity: the patterns of lipophilic drug entrapment and release. Korzhikov V; Averianov I; Litvinchuk E; Tennikova TB J Microencapsul; 2016 May; 33(3):199-208. PubMed ID: 26888064 [TBL] [Abstract][Full Text] [Related]
18. Bilayer tablets based on poly (epsilon-caprolactone) and polymethylmethacrilates as controlled-release systems for ruminants. Sanna V; Gavini E; Giunchedi P Pharm Dev Technol; 2004 Aug; 9(3):321-8. PubMed ID: 15458237 [TBL] [Abstract][Full Text] [Related]
19. [Intravitreal drug delivery by microspheres of biodegradable polymers]. Moritera T; Ogura Y; Honda Y; Wada R; Hyon SH; Ikada Y Nippon Ganka Gakkai Zasshi; 1990 May; 94(5):508-13. PubMed ID: 2220493 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of blends of star-poly(epsilon-caprolactone-co-D,L-lactide) and oligo(epsilon-caprolactone). Tomkins A; Kontopoulou M; Amsden B J Biomater Sci Polym Ed; 2005; 16(8):1009-21. PubMed ID: 16128234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]