These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 5290835)

  • 1. An experimental study of the structure mediating bilateral synchrony of epileptic discharges of cortical origin.
    Ottino CA; Meglio M; Rossi GF; Tercero E
    Epilepsia; 1971 Dec; 12(4):299-311. PubMed ID: 5290835
    [No Abstract]   [Full Text] [Related]  

  • 2. Bilateral synchrony of epileptic discharge associated with chronic asymmetrical cortical foci.
    Mutani R; Bergamini L; Fariello R; Quattrocolo G
    Electroencephalogr Clin Neurophysiol; 1973 Jan; 34(1):53-9. PubMed ID: 4118435
    [No Abstract]   [Full Text] [Related]  

  • 3. [Electrophysiologic characteristics of the mesodiencephalic and bulbar structures of the brain in experimental hypertension].
    Klimova-Cherkasova VI; Nichkov S
    Fiziol Zh SSSR Im I M Sechenova; 1972 Jun; 58(6):851-8. PubMed ID: 5077564
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of bilateral partial diencephalic lesions on cortical epileptic activity in generalized penicillin epilepsy in the cat.
    Pellegrini A; Gloor P
    Exp Neurol; 1979 Nov; 66(2):285-308. PubMed ID: 488222
    [No Abstract]   [Full Text] [Related]  

  • 5. Unitary analysis of epileptic activity in acute and chronic foci and related cortex of cat and monkey.
    Ishijima B
    Epilepsia; 1972 Aug; 13(4):561-81. PubMed ID: 4626675
    [No Abstract]   [Full Text] [Related]  

  • 6. Midbrain and callosal influences on the spread of focal cortical epileptic activity.
    Woodruff ML
    Brain Res; 1975 Feb; 85(1):53-8. PubMed ID: 803249
    [No Abstract]   [Full Text] [Related]  

  • 7. Involvement of cortical, thalamic and midbrain reticular formation neurons in spike and wave discharges: extracellular study in feline generalized penicillin epilepsy.
    Pellegrini A; Ermani M; Testa G
    Exp Neurol; 1985 Aug; 89(2):465-78. PubMed ID: 4018213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep cycle in rats with paroxysmal foci.
    Roldań E; Radil-Weiss T; Chocholová L
    Int J Neurosci; 1971 Nov; 2(4):179-81. PubMed ID: 5161311
    [No Abstract]   [Full Text] [Related]  

  • 9. Generalized convulsive seizures induced by daily electrical stimulation of the amygdala in cats. Correlative electrographic and behavioral features.
    Wada JA; Sata M
    Neurology; 1974 Jun; 24(6):565-74. PubMed ID: 4857551
    [No Abstract]   [Full Text] [Related]  

  • 10. A comparison of EEG modifications induced by coagulation of subthalamus, preoptic region and mesencephalic reticular formation.
    Bach-y-Rita G; Baurand C; Christolomme A
    Electroencephalogr Clin Neurophysiol; 1969 May; 26(5):493-502. PubMed ID: 4181450
    [No Abstract]   [Full Text] [Related]  

  • 11. The propagation of epileptic events.
    Williams D
    Mod Trends Neurol; 1970; 5(0):287-95. PubMed ID: 5006118
    [No Abstract]   [Full Text] [Related]  

  • 12. [Epileptic activity and nighttime sleep (review of the literature)].
    Sumskiĭ LI
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1971; 71(1):141-4. PubMed ID: 4935264
    [No Abstract]   [Full Text] [Related]  

  • 13. Brain-stem and cortical mechanisms in an animal model of generalized corticoreticular epilepsy.
    Gloor P; Testa G; Guberman A
    Trans Am Neurol Assoc; 1973; 98():203-5. PubMed ID: 4784936
    [No Abstract]   [Full Text] [Related]  

  • 14. [EEG of rabbits in experimental encephalitis].
    Bondarev VN; Voĭtinskiĭ EIa; Piskareva NA; Ryzhova TP
    Biull Eksp Biol Med; 1971 Oct; 72(10):24-6. PubMed ID: 4399470
    [No Abstract]   [Full Text] [Related]  

  • 15. Neurophysiological mechanisms involved in grand mal seizures induced by Metrazol and Megimide.
    Rodin E; Onuma T; Wasson S; Porzak J; Rodin M
    Electroencephalogr Clin Neurophysiol; 1971 Jan; 30(1):62-72. PubMed ID: 4099539
    [No Abstract]   [Full Text] [Related]  

  • 16. [The dual role of the caudate nucleus in regulating seizures].
    Arushanian EB
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1975; 75(3):444-50. PubMed ID: 235184
    [No Abstract]   [Full Text] [Related]  

  • 17. Electrophysiologic analysis of epileptic beagles.
    Wiederholt WC
    Neurology; 1974 Feb; 24(2):149-55. PubMed ID: 4855683
    [No Abstract]   [Full Text] [Related]  

  • 18. Electrical changes in the brain in the course of experimental allergic encephalomyelitis in rabbits.
    Feldman S; Tal C; Behar AJ
    J Neurol Sci; 1969; 8(3):413-24. PubMed ID: 5807280
    [No Abstract]   [Full Text] [Related]  

  • 19. The role of the corpus callosum in bilateral interhemispheric synchrony of spike and wave discharge in feline generalized penicillin epilepsy.
    Musgrave J; Gloor P
    Epilepsia; 1980 Aug; 21(4):369-78. PubMed ID: 7398604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of corpus callosum stimulation on the morphology and frequency of epileptic bursts in the feline topical penicillin generalized model.
    Cukiert A; Baumel SW; Andreolli M; Marino R
    Stereotact Funct Neurosurg; 1989; 52(1):18-25. PubMed ID: 2919239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.