These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Separate, Ca2+-activated K+ and Cl- transport pathways in Ehrlich ascites tumor cells. Hoffmann EK; Lambert IH; Simonsen LO J Membr Biol; 1986; 91(3):227-44. PubMed ID: 2427725 [TBL] [Abstract][Full Text] [Related]
4. Cation permeability and ouabain-insensitive cation flux in the Ehrlich ascites tumor cell. Mills B; Tupper JT J Membr Biol; 1975; 20(1-2):75-97. PubMed ID: 1121028 [TBL] [Abstract][Full Text] [Related]
5. The effect of external anions on steady-state chloride exchange across ascites tumour cells. Aull F J Physiol; 1972 Mar; 221(3):755-71. PubMed ID: 5016371 [TBL] [Abstract][Full Text] [Related]
6. Chloride transport by self-exchange and by KCl salt diffusion in gramicidin-treated red blood cells. Cass A; Dalmark M Acta Physiol Scand; 1979 Nov; 107(3):193-203. PubMed ID: 94237 [TBL] [Abstract][Full Text] [Related]
7. Potassium chloride cotransport in steady-state ascites tumor cells. Does bumetanide inhibit? Aull F Biochim Biophys Acta; 1981 May; 643(2):339-45. PubMed ID: 7225386 [TBL] [Abstract][Full Text] [Related]
8. The transport of chloride in Ehrlich ascites tumor cells. Levinson C; Villereal ML J Cell Physiol; 1976 Jun; 88(2):181-92. PubMed ID: 1270521 [TBL] [Abstract][Full Text] [Related]
9. Activation of Cl-dependent K transport in Ehrlich ascites tumor cells. Kramhøft B; Lambert IH; Hoffmann EK; Jørgensen F Am J Physiol; 1986 Sep; 251(3 Pt 1):C369-79. PubMed ID: 3092674 [TBL] [Abstract][Full Text] [Related]
10. Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin. Strickholm A Biophys J; 1981 Sep; 35(3):677-97. PubMed ID: 7272457 [TBL] [Abstract][Full Text] [Related]
11. Saturation behavior of ascites tumor cell chloride exchange in the presence of gluconate. Aull F Biochim Biophys Acta; 1979 Jul; 554(2):538-40. PubMed ID: 486458 [TBL] [Abstract][Full Text] [Related]
12. Human erythrocyte anion permeabilities measured under conditions of net charge transfer. Hunter MJ J Physiol; 1977 Jun; 268(1):35-49. PubMed ID: 874904 [TBL] [Abstract][Full Text] [Related]
13. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time. Gunn RB; Fröhlich O J Gen Physiol; 1979 Sep; 74(3):351-74. PubMed ID: 479826 [TBL] [Abstract][Full Text] [Related]
14. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. Dalmark M; Wieth JO J Physiol; 1972 Aug; 224(3):583-610. PubMed ID: 5071931 [TBL] [Abstract][Full Text] [Related]
15. Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells. Hoffmann EK Fed Proc; 1985 Jun; 44(9):2513-9. PubMed ID: 2581818 [TBL] [Abstract][Full Text] [Related]
17. Coupled transport of protons and anions through lipid bilayer membranes containing a long-chain secondary amine. Gutknecht J; Walter A J Membr Biol; 1979 May; 47(1):59-76. PubMed ID: 37342 [TBL] [Abstract][Full Text] [Related]
18. Effect of some monovalent anions on chloride and sulphate permeability of human red cells. Wieth JO J Physiol; 1970 May; 207(3):581-609. PubMed ID: 5499737 [TBL] [Abstract][Full Text] [Related]
20. Calculation of the membrane potential in smooth muscle cells of the guinea-pig's taenia coli by the Goldman equation. Casteels R J Physiol; 1969 Nov; 205(1):193-208. PubMed ID: 5354999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]