These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 529997)

  • 21. Is the vertical disposition of Mycoplasma membrane proteins affected by membrane fluidity?
    Amar A; Rottem S; Razin S
    Biochim Biophys Acta; 1979 Apr; 552(3):457-67. PubMed ID: 444513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energization of amino acid transport, studied for the Ehrlich ascites tumor cell.
    Christensen HN; de Cespedes C; Handlogten ME; Ronquist G
    Biochim Biophys Acta; 1973 Dec; 300(4):487-522. PubMed ID: 4130564
    [No Abstract]   [Full Text] [Related]  

  • 23. Transport of amino acids in intact 3T3 and SV3T3 cells. Binding activity for leucine in membrane preparations of ehrlich ascites tumor cells.
    Cecchini G; Lee M; Oxender DL
    J Supramol Struct; 1976; 4(4):441-7. PubMed ID: 180354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of specific acidic lipids on the reconstitution of Na(+)-dependent amino acid transport in proteoliposomes derived from Ehrlich cell plasma membranes.
    Lin GR; McCormick JI; Dhe-Paganon S; Silvius JR; Johnstone RM
    Biochemistry; 1990 May; 29(19):4575-81. PubMed ID: 2372542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of cellular amino acids and the Na+ : K+ pump on the membrane potential of the Ehrlich ascites tumor cell.
    Laris PC; Bootman M; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1978 Sep; 512(2):397-414. PubMed ID: 213114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered fatty acid membrane composition modifies lymphocyte localization in vivo.
    Novo C; Fonseca E; Freitas AA
    Cell Immunol; 1987 May; 106(2):387-96. PubMed ID: 2882861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stimulation of Na+ -dependent amino acid uptake by activation of the Ca2+ -dependent K+ channel in the Ehrlich ascites tumor cell.
    Valdeolmillos M; GarcĂ­a-Sancho J; Herreros B
    Biochim Biophys Acta; 1982 Jul; 689(1):177-9. PubMed ID: 6285975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of alterations in membrane lipid unsaturation on the properties of the insulin receptor of Ehrlich ascites cells.
    Ginsberg BH; Jabour J; Spector AA
    Biochim Biophys Acta; 1982 Sep; 690(2):157-64. PubMed ID: 6751393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relation of amino acid transport to sodium-ion concentration.
    Wheeler KP; Inui Y; Hollenberg PF; Eavenson E; Christensen HN
    Biochim Biophys Acta; 1965 Nov; 109(2):620-2. PubMed ID: 5867563
    [No Abstract]   [Full Text] [Related]  

  • 30. Rate equations of some cases of enzyme inhibition and activation--their application to sodium-activated membrane transport systems.
    Semenza G
    J Theor Biol; 1967 Apr; 15(1):145-76. PubMed ID: 6034158
    [No Abstract]   [Full Text] [Related]  

  • 31. Changes in lipid composition of ehrlich ascites tumor cells induced by cultivation in media with increased sodium chloride content.
    Egge H; Schachtschabel D; Zilliken F
    FEBS Lett; 1972 Jul; 24(1):49-52. PubMed ID: 4673649
    [No Abstract]   [Full Text] [Related]  

  • 32. Transport of the amino acid analog, 2-aminobicyclo(2,2,1)-heptane-2-carboxylic acid, by Ehrlich ascites tumor cells.
    McClellan WM; Schafer JA
    Biochim Biophys Acta; 1973 Jul; 311(3):462-75. PubMed ID: 4738149
    [No Abstract]   [Full Text] [Related]  

  • 33. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.
    Laris PC; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1976 Jun; 436(2):475-88. PubMed ID: 1276225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Na+-linked cotransport of glycine in vesicles of Ehrlich cells.
    Shapiro MP; Heinz E
    Biochim Biophys Acta; 1980 Aug; 600(3):898-911. PubMed ID: 7407150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell physiology. Fatty feedback and fluidity.
    Maresca B; Cossins AR
    Nature; 1993 Oct; 365(6447):606-7. PubMed ID: 8413623
    [No Abstract]   [Full Text] [Related]  

  • 36. Growth-inhibition effects of oleic acid, linoleic acid, and their methyl esters on transplanted tumors in mice.
    Zhu YP; Su ZW; Li CH
    J Natl Cancer Inst; 1989 Sep; 81(17):1302-6. PubMed ID: 2769782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of the fluorescent probe, 3,3'-dipropylthiodicarbocyanine iodide, on the membrane potential of Ehrlich ascites tumor cells.
    Smith TC; Robinson SC
    Biochem Biophys Res Commun; 1980 Jul; 95(2):722-7. PubMed ID: 7417285
    [No Abstract]   [Full Text] [Related]  

  • 38. Role of ATP on the initial rate of amino acid uptake in Ehrlich ascites cells.
    Johnstone RM
    Biochim Biophys Acta; 1974 Aug; 356(3):319-30. PubMed ID: 4858486
    [No Abstract]   [Full Text] [Related]  

  • 39. Cations, transport and exchange diffusion of methionine in Ehrlich ascites cells.
    Potashner S; Johnston RM
    Biochim Biophys Acta; 1970 Jun; 203(3):445-56. PubMed ID: 5523743
    [No Abstract]   [Full Text] [Related]  

  • 40. Modified transport substrates as probes for intramembrane gradients.
    Christensen HN; De Cespedes C; Handlogten ME; Ronquist G
    Ann N Y Acad Sci; 1974 Feb; 227():355-79. PubMed ID: 4133305
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.