These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 530465)

  • 41. Increases in NMDA receptor binding are specifically related to memory formation for a passive avoidance task in the chick: a quantitative autoradiographic study.
    Steele RJ; Stewart MG; Rose SP
    Brain Res; 1995 Mar; 674(2):352-6. PubMed ID: 7796116
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibitors of cAMP-dependent protein kinase impair long-term memory formation in day-old chicks.
    Zhao WQ; Polya GM; Wang BH; Gibbs ME; Sedman GL; Ng KT
    Neurobiol Learn Mem; 1995 Sep; 64(2):106-18. PubMed ID: 7582818
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biochemical aspects of protein synthesis inhibition by cycloheximide in one or both hemispheres of the chick brain.
    Gibbs ME; Richdale AL; Ng KT
    Pharmacol Biochem Behav; 1979 Jun; 10(6):929-31. PubMed ID: 482315
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterisation of antibodies specific for chick brain neural cell adhesion molecules which cause amnesia for a passive avoidance task.
    Mileusnic R; Rose SP; Lancashire C; Bullock S
    J Neurochem; 1995 Jun; 64(6):2598-606. PubMed ID: 7539055
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Apolipoprotein E antibodies affect the retention of passive avoidance memory in the chick.
    Lancashire C; Mileusnic R; Rose SP
    Neural Plast; 1998; 6(3):29-40. PubMed ID: 9920680
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of the opioid receptors involved in passive-avoidance learning in the day-old chick during the second wave of neuronal activity.
    Freeman FM; Young IG
    Brain Res; 2000 May; 864(2):230-9. PubMed ID: 10802030
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Passive avoidance memory consolidation and reinstatement in the young rat.
    Blozovski D; Buser P
    Neurosci Lett; 1988 Jun; 89(1):114-9. PubMed ID: 3399138
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diphenylhydantoin facilitation of labile, protein-independent memory.
    Gibbs ME; Ng KT
    Brain Res Bull; 1976; 1(2):203-8. PubMed ID: 135601
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of prenatal morphine exposure on memory consolidation in the chick.
    Che Y; Sun H; Tan H; Peng Y; Zeng T; Ma Y
    Neurosci Lett; 2005 Jun; 380(3):300-4. PubMed ID: 15862906
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Brain-derived neurotrophic factor facilitates memory consolidation and reconsolidation of a weak training stimulus in the day-old chick.
    Samartgis JR; Schachte L; Hazi A; Crowe SF
    Neurosci Lett; 2012 May; 516(1):119-23. PubMed ID: 22484543
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interocular transfer in parallel visual pathways in pigeons.
    Watanabe S; Hodos W; Bessette BB; Shimizu T
    Brain Behav Evol; 1986; 29(3-4):184-95. PubMed ID: 3594202
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetics of memory consolidation: role of amnesic treatment parameters.
    Cherkin A
    Proc Natl Acad Sci U S A; 1969 Aug; 63(4):1094-101. PubMed ID: 5261913
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Bilateral imprinting in the chicks of precocial birds in response to monocular presentation of an object].
    Petrova LP; Markovskikh EP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1986; 36(4):692-7. PubMed ID: 3765836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Time course of memory formation for an appetitive, one-trial, water-reward task in day-old chicks.
    Barber TA
    Behav Processes; 2019 Jan; 158():151-154. PubMed ID: 30458227
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The involvement of Ca2+/calmodulin-dependent protein kinase in memory formation in day-old chicks.
    Zhao WQ; Bennett P; Rickard N; Sedman GL; Gibbs ME; Ng KT
    Neurobiol Learn Mem; 1996 Jul; 66(1):24-35. PubMed ID: 8661248
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced inhibitory avoidance learning prevents the long-term memory-impairing effects of cycloheximide, a protein synthesis inhibitor.
    Díaz-Trujillo A; Contreras J; Medina AC; Silveyra-Leon GA; Antaramian A; Quirarte GL; Prado-Alcalá RA
    Neurobiol Learn Mem; 2009 Mar; 91(3):310-4. PubMed ID: 19010429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. APP is required during an early phase of memory formation.
    Mileusnic R; Lancashire CL; Johnston AN; Rose SP
    Eur J Neurosci; 2000 Dec; 12(12):4487-95. PubMed ID: 11122359
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reminder effects: the molecular cascade following a reminder in young chicks does not recapitulate that following training on a passive avoidance task.
    Salinska E; Bourne RC; Rose SP
    Eur J Neurosci; 2004 Jun; 19(11):3042-7. PubMed ID: 15182312
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of group I metabotropic glutamate receptors in memory consolidation and reconsolidation in the passive avoidance task in 1-day-old chicks.
    Salinska E
    Neurochem Int; 2006; 48(6-7):447-52. PubMed ID: 16510211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. State-dependent recall can be induced by protein synthesis inhibition: behavioural and morphological observations.
    Bradley PM; Galal KM
    Brain Res; 1988 May; 468(2):243-51. PubMed ID: 3382959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.