These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 530509)

  • 61. Goldfish retinotectal system: continuing development and synaptogenesis.
    Marotte LR
    J Comp Neurol; 1980 Sep; 193(2):319-34. PubMed ID: 7440770
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of algal-produced neurotoxins on metabolic activity in telencephalon, optic tectum and cerebellum of Atlantic salmon (Salmo salar).
    Bakke MJ; Horsberg TE
    Aquat Toxicol; 2007 Nov; 85(2):96-103. PubMed ID: 17870190
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ascending spinal projections to the optic tectum, facial and vagal lobes in the goldfish, Carassius auratus.
    Prasada Rao PD; Sharma SC
    Brain Res; 1999 Jan; 817(1-2):209-14. PubMed ID: 9889369
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Morphological restructurings in the brain due to a decrease in the catecholamine level].
    Otellin VA; Kucherenko RP; Gilerovich EG; Usova IP; Fedosikhina LA
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1984; 84(7):978-81. PubMed ID: 6089476
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Correlation between central catecholamine level and post-decapitation convulsion in rats treated with 6-hydroxydopamine.
    Suenaga N; Yamada K; Fukuda T
    Brain Res; 1977 Feb; 122(1):165-9. PubMed ID: 837220
    [No Abstract]   [Full Text] [Related]  

  • 66. Retinal projections in the goldfish: a study using cobaltous-lysine.
    Springer AD; Gaffney JS
    J Comp Neurol; 1981 Dec; 203(3):401-24. PubMed ID: 6274920
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of 6-hydroxydopamine on blood pressure and heart rate responses to intracisternal clonidine in conscious rabbits.
    Reynoldson JA; Head GA; Korner PI
    Eur J Pharmacol; 1979 May; 55(3):257-62. PubMed ID: 456424
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Glutamic acid binding in goldfish brain and denervated optic tectum.
    Francis A; Quitschke W; Schechter N
    Brain Res; 1981 Jul; 216(2):375-86. PubMed ID: 6265034
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Laminar and sublaminar ultracytochemical localization of cytochrome oxidase in the optic tectum of normal goldfish.
    Kageyama GH; Meyer RL
    J Comp Neurol; 1988 Dec; 278(4):498-520. PubMed ID: 2852681
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Effect of neonatal 6-hydroxydopamine administration on the catecholaminergic structures of the hypothalamus and on the behavior of rats of various ages].
    Konstantinova MS; Semenova TP; Grishchenko NI; Gromova EA; Polenov AL
    Ontogenez; 1989; 20(3):332-6. PubMed ID: 2549482
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of actinomycin-D on labelled material in the retina and optic tectum of goldfish after intraocular injection of tritiated RNA precursors.
    Ingoglia NA; Grafstein B; McEwen BS
    J Neurochem; 1974 Oct; 23(4):681-7. PubMed ID: 4139241
    [No Abstract]   [Full Text] [Related]  

  • 72. The effects of 6-hydroxydopamine on vagal cardioaccelerator systems.
    Alter WA; Weiss GK; Priola DV; Spurgeon HA
    J Pharmacol Exp Ther; 1973 Oct; 187(1):99-104. PubMed ID: 4746337
    [No Abstract]   [Full Text] [Related]  

  • 73. Recovery of tectal nicotinic-cholinergic receptor sites during optic nerve degeneration in goldfish.
    Schechter N; Francis A; Deutsch DG; Gazzaniga MS
    Brain Res; 1979 Apr; 166(1):57-64. PubMed ID: 421155
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Interactions between optic fibres controlling the locations of their terminals in the goldfish optic tectum.
    Cook JE
    J Embryol Exp Morphol; 1979 Aug; 52():89-103. PubMed ID: 521756
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [3H]kainate localization in goldfish brain: receptor autoradiography and membrane binding.
    Ziegra CJ; Oswald RE; Bass AH
    Brain Res; 1990 Sep; 527(2):308-17. PubMed ID: 2174719
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Intertectal neuronal plasticity in Xenopus laevis: persistence despite catecholamine depletion.
    Udin SB; Keating MJ; Dawes EA; Grant S; Deakin JF
    Brain Res; 1985 Mar; 351(1):81-8. PubMed ID: 3922567
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Further studies on catecholamine-containing specific endothelial granules in carp cerebral veins. A fluorescence histochemical and electron microscopy study.
    Iijima T; Wasano T
    Anat Rec; 1980 Nov; 198(3):415-20. PubMed ID: 7457935
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Further studies on the effects of intravenously administered 6-hydroxydopamine on the median eminence of the rat.
    Smith GC; Courtney PG; Wreford NG; Walker MM
    Brain Res; 1982 Feb; 234(1):101-10. PubMed ID: 6800564
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A role of the central catecholamine neuron in cerebral circulation.
    Yokote H; Itakura T; Nakai K; Kamei I; Imai H; Komai N
    J Neurosurg; 1986 Sep; 65(3):370-5. PubMed ID: 3090211
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparison of central effects of 6-aminodopamine and 6-hydroxydopamine on catecholamine levels.
    Oke A; Freeman R; Adams RN
    Eur J Pharmacol; 1974 Apr; 26(1):125-7. PubMed ID: 4831981
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.