These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 530528)

  • 1. A system of cells in the unstimulated rat brain characterized by preferential accumulation of [3H]deoxyglucose.
    Wagner HJ; Pilgrim C; Zwerger H
    Neurosci Lett; 1979 Dec; 15(2-3):181-6. PubMed ID: 530528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic mapping of the brain during rewarding self-stimulation.
    Porrino LJ; Esposito RU; Seeger TF; Crane AM; Pert A; Sokoloff L
    Science; 1984 Apr; 224(4646):306-9. PubMed ID: 6710145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled forebrain increases of local cerebral glucose utilization and blood flow during physiologic stimulation of a somatosensory pathway in the rat: demonstration by double-label autoradiography.
    Ginsberg MD; Dietrich WD; Busto R
    Neurology; 1987 Jan; 37(1):11-9. PubMed ID: 3796826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of adrenocorticotropin(1-24) on [3H]2-deoxy-D-glucose uptake in cultured cells derived from different brain regions.
    Bistritzer T; Levin PA; Roeder LM; Kapcala LP
    Neurosci Lett; 1988 Oct; 93(1):79-84. PubMed ID: 3211371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative measurement of local cerebral metabolic rate for glucose utilizing tritiated 2-deoxyglucose.
    Alexander GM; Schwartzman RJ; Bell RD; Yu J; Renthal A
    Brain Res; 1981 Oct; 223(1):59-67. PubMed ID: 7284810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sequential double-label 14C- and 3H-2-DG technique: validation by double-dissociation of functional states.
    Friedman HR; Bruce CJ; Goldman-Rakic PS
    Exp Brain Res; 1987; 66(3):543-54. PubMed ID: 3609200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-Deoxyglucose uptake in the central nervous system during systemic hypercapnia in the peripherally chemodenervated rat.
    Ciriello J; Rohlicek CV; Polosa C
    Exp Neurol; 1985 Jun; 88(3):673-87. PubMed ID: 3996514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcortical changes in the regional uptake of [3H]-2-deoxyglucose in the brain of the monkey during experimental choreiform dyskinesia elicited by injection of a gamma-aminobutyric acid antagonist into the subthalamic nucleus.
    Mitchell IJ; Sambrook MA; Crossman AR
    Brain; 1985 Jun; 108 ( Pt 2)():405-22. PubMed ID: 4005529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tritium quench in autoradiography during postnatal development of rat forebrain.
    Happe HK; Murrin LC
    Brain Res; 1990 Aug; 525(1):28-35. PubMed ID: 2245324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hippocampal afterdischarges: differential spread of activity shown by the [14C]deoxyglucose technique.
    Kliot M; Poletti CE
    Science; 1979 May; 204(4393):641-3. PubMed ID: 432672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective activation of striatal output nuclei by organophosphorus intoxication in the rat: EEG and 2-deoxy[3H]glucose metabolic mapping.
    Pellet-Gondret MH; Mailly P
    Toxicol Lett; 1988 Nov; 44(1-2):101-8. PubMed ID: 3188066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion-induced alterations in 2-deoxyglucose uptake in brainstem nuclei of squirrel monkeys: autoradiographic and liquid scintillation studies.
    Brizzee KR; Dunlap WP
    Brain Behav Evol; 1983; 23(1-2):14-25. PubMed ID: 6652470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Functional study of the rat olfactory bulb by a 14C-2-deoxyglucose autoradiographic technic].
    Verrier M; Giachetti I; Leveteau J; MacLeod P
    C R Acad Hebd Seances Acad Sci D; 1978 May; 286(18):1293-5. PubMed ID: 96988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local cerebral alterations in [14C-2]deoxyglucose uptake following memory formation.
    Shimada M; Murakami TH; Imahayashi T; Ozaki HS
    J Anat; 1983 Jun; 136(Pt 4):751-9. PubMed ID: 6885626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with (14C)deoxyglucose.
    Kennedy C; Des Rosiers MH; Jehle JW; Reivich M; Sharpe F; Sokoloff L
    Science; 1975 Mar; 187(4179):850-3. PubMed ID: 1114332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water deprivation results in increased 2-deoxyglucose uptake by paraventricular neurones as well as pars nervosa in Wistar and Brattleboro rats.
    Sutherland RC; Martin MJ; McQueen JK; Fink G
    Brain Res; 1983 Jul; 271(1):101-8. PubMed ID: 6883108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deoxyglucose mapping in the cat visual cortex following carotid artery injection and cortical flat-mounting.
    Freeman B; Löwel S; Singer W
    J Neurosci Methods; 1987 Jun; 20(2):115-29. PubMed ID: 3298866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High activity neurons in the reticular formation of the medulla oblongata: a high-resolution autoradiographic 2-deoxyglucose study.
    Duncan GE; Kaldas RG; Mitra KE; Breese GR; Stumpf WE
    Neuroscience; 1990; 35(3):593-600. PubMed ID: 2381517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High resolution autoradiography at the regional topographic level with [14C]2-deoxyglucose and [3H]2-deoxyglucose.
    Duncan GE; Stumpf WE; Pilgrim C; Breese GR
    J Neurosci Methods; 1987 Jun; 20(2):105-13. PubMed ID: 3600030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attempts to combine 2-deoxyglucose autoradiography and tyrosine hydroxylase immunohistochemistry.
    Hökfelt T; Smith CB; Norell G; Peters A; Crane A; Goldstein M; Brownstein M; Sokoloff L
    Neuroscience; 1984 Oct; 13(2):495-512. PubMed ID: 6151149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.