These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 5305650)

  • 1. Inactivation of some insecticides by bacteria in mosquito breeding polluted water.
    Hirakoso S
    Jpn J Exp Med; 1968 Aug; 38(4):327-34. PubMed ID: 5305650
    [No Abstract]   [Full Text] [Related]  

  • 2. Inactivating effects of micro-organisms on insecticidal activity of Dursban.
    Hirakoso S
    Jpn J Exp Med; 1969 Feb; 39(1):17-20. PubMed ID: 5307966
    [No Abstract]   [Full Text] [Related]  

  • 3. Chitynolytic bacteria in water and bottom sediments of two lakes of different trophy.
    Donderski W
    Acta Microbiol Pol; 1984; 33(2):163-70. PubMed ID: 6209933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of organophosphorus and carbamate insecticides in the soil and by soil microorganisms.
    Laveglia J; Dahm PA
    Annu Rev Entomol; 1977; 22():483-513. PubMed ID: 402103
    [No Abstract]   [Full Text] [Related]  

  • 5. Hydrolysis of selected organophosphorus insecticides by two bacteria isolated from flood soil.
    Adhya TK; Sudhakar-Barik ; Sethunathan N
    J Appl Bacteriol; 1981 Feb; 50(1):167-72. PubMed ID: 7228819
    [No Abstract]   [Full Text] [Related]  

  • 6. Quantitative selection of denitrifying bacteria in continuous cultures and requirement for organic carbon. II. Maltose.
    Jaworowska-Deptuch H; Wieczorek J; Mycielski R
    Acta Microbiol Pol; 1985; 34(3-4):293-300. PubMed ID: 2421546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of insecticides by bacteria isolated from polluted waters where the mosquito larva bred in large number.
    Hirakoso S; Kitago I; Harinasuta C
    Med J Malaya; 1968 Mar; 22(3):249. PubMed ID: 4386490
    [No Abstract]   [Full Text] [Related]  

  • 8. [Studies on biodegradation of synthetic detergents by microorganisms].
    Oba K
    Nihon Eiseigaku Zasshi; 1971 Feb; 25(6):494-511. PubMed ID: 5105093
    [No Abstract]   [Full Text] [Related]  

  • 9. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil.
    Cycoń M; Wójcik M; Piotrowska-Seget Z
    Chemosphere; 2009 Jul; 76(4):494-501. PubMed ID: 19356785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the activated sludge bacteria participating in the biodegradation of methanol, formaldehyde and ethylene glycol. II. Utilization of various carbon and nitrogen compounds.
    Grabińska-Loniewska A
    Acta Microbiol Pol B; 1974; 6(2):83-8. PubMed ID: 4209889
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies on pectolytic bacteria in water and bottom sediments of two lakes of different trophy.
    Donderski W
    Acta Microbiol Pol; 1982; 31(3-4):293-9. PubMed ID: 6189379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of nonfermentative gram-negative rods in clinical material.
    Sandlin C
    Am J Med Technol; 1974 Jul; 40(7):326-31. PubMed ID: 4135805
    [No Abstract]   [Full Text] [Related]  

  • 13. Influence of clay minerals on microorganisms. I. Montmorillonite and kaolinite on bacteria.
    Stotzky G; Rem LT
    Can J Microbiol; 1966 Jun; 12(3):547-63. PubMed ID: 4289932
    [No Abstract]   [Full Text] [Related]  

  • 14. Incidence and identification of phospholipase C-producing bacteria in fresh and spoiled homogenized milk.
    Fox CW; Chrisope GL; Marshall RT
    J Dairy Sci; 1976 Nov; 59(11):1857-64. PubMed ID: 1036497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative abundance and the relationships between aniline, phenol and catechol degraders in fresh water.
    Nasu M; Goonewardena N; Kogame R; Yamaguchi N; Tani K; Kondo M
    Biomed Environ Sci; 1993 Mar; 6(1):95-101. PubMed ID: 8476539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of phenylmercuric acetate by mercury-resistant bacteria.
    Nelson JD; Blair W; Brinckman FE; Colwell RR; Iverson WP
    Appl Microbiol; 1973 Sep; 26(3):321-6. PubMed ID: 4584577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Flavobacterium sp. that degrades diazinon and parathion.
    Sethunathan N; Yoshida T
    Can J Microbiol; 1973 Jul; 19(7):873-5. PubMed ID: 4727806
    [No Abstract]   [Full Text] [Related]  

  • 18. Microbial degradation of synthetic organochlorine compounds.
    Motosugi K; Soda K
    Experientia; 1983 Nov; 39(11):1214-20. PubMed ID: 6416886
    [No Abstract]   [Full Text] [Related]  

  • 19. Uptake of 32P-parathion and 32P-imidan by Euglena gracilis.
    Kortus J; Macŭch P; Mayer J; Durcek K; Krcméry V
    J Hyg Epidemiol Microbiol Immunol; 1971; 15(1):101-3. PubMed ID: 5102896
    [No Abstract]   [Full Text] [Related]  

  • 20. [Combined medium for the analysis of urease and the transformation of L-phenylalanine to phenylpyruvic acid].
    Vassiliadis P; Politi G
    Ann Inst Pasteur (Paris); 1968 Apr; 114(4):431-5. PubMed ID: 5674583
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.