These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 5305691)

  • 1. Drug resistance of staphylococci. Foation of erythromycin-ribosome complex. Decrease in the formation of erythromycin-ribosome complex in erythromycin resistant strains of Staphylococcus aureus.
    Saito T; Hashimoto H; Mitsuhashi S
    Jpn J Microbiol; 1969 Mar; 13(1):119-21. PubMed ID: 5305691
    [No Abstract]   [Full Text] [Related]  

  • 2. Macrolide resistance in Staphylococcus aureus. Decrease of spiramycin-binding to 50S ribosomal subunit in macrolide resistant strains of staphylococci.
    Shimizu M; Saito T; Mitsuhashi S
    J Antibiot (Tokyo); 1970 Sep; 23(9):467-8. PubMed ID: 5459628
    [No Abstract]   [Full Text] [Related]  

  • 3. Erythromycin-inducible resistance in Staphylococcus aureus: requirements for induction.
    Weisblum B; Siddhikol C; Lai CJ; Demohn V
    J Bacteriol; 1971 Jun; 106(3):835-47. PubMed ID: 4397638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The problems of drug-resistant pathogenic bacteria. Macrolide resistance in staphylococci.
    Saito T; Shimizu M; Mitsuhashi S
    Ann N Y Acad Sci; 1971 Jun; 182():267-78. PubMed ID: 5285291
    [No Abstract]   [Full Text] [Related]  

  • 5. Macrolide resistance in Staphylococcus aureus. Relation between spiramycin-binding to ribosome and inhibition of polypeptide synthesis in a heat inducible-resistant mutant.
    Shimizu M; Saito T; Mitsuhashi S
    Jpn J Microbiol; 1970 Mar; 14(2):155-62. PubMed ID: 5309853
    [No Abstract]   [Full Text] [Related]  

  • 6. Spiramycin resistance in Staphylococcus aureus. Decrease in spiramycin-accumulation and the ribosomal affinity of spiramycin in resistant staphylococci.
    Shimizu M; Saito T; Hashimoto H; Mitsuhashi S
    J Antibiot (Tokyo); 1970 Feb; 23(2):63-7. PubMed ID: 5416652
    [No Abstract]   [Full Text] [Related]  

  • 7. Antibacterial activity of 2'-esters of erythromycin.
    Tardrew PL; Mao JC; Kenney D
    Appl Microbiol; 1969 Aug; 18(2):159-65. PubMed ID: 5807154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mendelian and uniparental alterations in erythromycin binding by plastid ribosomes.
    Mets LJ; Bogorad L
    Science; 1971 Nov; 174(4010):707-9. PubMed ID: 5123420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration of 23 S ribosomal RNA and erythromycin-induced resistance to lincomycin and spiramycin in Staphylococcus aureus.
    Lai CJ; Weisblum B; Fahnestock SR; Nomura M
    J Mol Biol; 1973 Feb; 74(1):67-72. PubMed ID: 4731016
    [No Abstract]   [Full Text] [Related]  

  • 10. Accumulation in gram-postive and gram-negative bacteria as a mechanism of resistance to erythromycin.
    Mao JC; Putterman M
    J Bacteriol; 1968 Mar; 95(3):1111-7. PubMed ID: 4966821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus.
    Lai CJ; Weisblum B
    Proc Natl Acad Sci U S A; 1971 Apr; 68(4):856-60. PubMed ID: 5279527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of genes encoding erythromycin ribosomal methylases and an erythromycin efflux pump in epidemiologically distinct groups of staphylococci.
    Eady EA; Ross JI; Tipper JL; Walters CE; Cove JH; Noble WC
    J Antimicrob Chemother; 1993 Feb; 31(2):211-7. PubMed ID: 8463168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. erm genes in erythromycin-resistant Staphylococcus aureus and coagulase-negative staphylococci.
    Westh H; Hougaard DM; Vuust J; Rosdahl VT
    APMIS; 1995 Mar; 103(3):225-32. PubMed ID: 7755979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrolide resistance in Staphylococcus aureus. Correlation between spiramycin-binding to ribosomes and inhibition of polypeptide synthesis in cell-free system.
    Shimizu M; Saito T; Mitsuhashi S
    Jpn J Microbiol; 1970 May; 14(3):215-9. PubMed ID: 5311073
    [No Abstract]   [Full Text] [Related]  

  • 15. The stoichiometry of erythromycin binding to ribosomal particles of Staphylococcus aureus.
    Mao JC
    Biochem Pharmacol; 1967 Dec; 16(12):2441-3. PubMed ID: 6075404
    [No Abstract]   [Full Text] [Related]  

  • 16. Erythromycin-resistant mutant of Escherichia coli with altered ribosomal protein component.
    Tanaka K; Teraoka H; Tamaki M; Otaka E; Osawa S
    Science; 1968 Nov; 162(3853):576-8. PubMed ID: 4886608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesive binding of rokitamycin to Staphylococcus aureus ribosomes.
    Endou K; Matsuoka M; Nakajima Y
    FEMS Microbiol Lett; 1990 Oct; 60(1-2):93-6. PubMed ID: 2283045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosomes from erythromycin-resistant mutants of Escherichia coli Q13.
    Otaka E; Teraoka H; Tamaki M; Tanaka K; Osawa S
    J Mol Biol; 1970 Mar; 48(3):499-510. PubMed ID: 4911813
    [No Abstract]   [Full Text] [Related]  

  • 19. Spiramycin resistance in Staphylococcus aureus. The stoichiometry of spiramycin-binding to ribosomes from spiramycin-sensitive, intermediate- and high-resistant strains.
    Shimizu M; Saito T; Mitsuhashi S
    Jpn J Microbiol; 1970 Mar; 14(2):177-8. PubMed ID: 5309854
    [No Abstract]   [Full Text] [Related]  

  • 20. Structure of an inducibly methylatable nucleotide sequence in 23S ribosomal ribonucleic acid from erythromycin-resistant Staphylococcus aureus.
    Lai CJ; Dahlberg JE; Weisblum B
    Biochemistry; 1973 Jan; 12(3):457-60. PubMed ID: 4683489
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.