These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 5305788)
1. Sulfur metabolism in Thiorhodaceae. V. Enzymes of sulfur metabolism in Thiocapsa floridana and Chromatium species. Thiele HH Antonie Van Leeuwenhoek; 1968; 34(3):350-6. PubMed ID: 5305788 [No Abstract] [Full Text] [Related]
2. Sulfur metabolism in Thiorhodaceae. IV. Assimilatory reduction of sulfate by Thiocapsa floridana and Chromatium species. Thiele HH Antonie Van Leeuwenhoek; 1968; 34(3):341-9. PubMed ID: 5305787 [No Abstract] [Full Text] [Related]
3. Suphur metabolism in Thiorhodaceae. 3. Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species. Trüper HG; Pfennig N Antonie Van Leeuwenhoek; 1966; 32(3):261-76. PubMed ID: 5296712 [No Abstract] [Full Text] [Related]
4. SULPHUR METABOLISM IN THIORHODACEAE. II. STOICHIOMETRIC RELATIONSHIP OF CO2 FIXATION TO OXIDATION OF HYDROGEN SULPHIDE AND INTRACELLULAR SULPHUR IN CHROMATIUM OKENII. TRUEPER HG Antonie Van Leeuwenhoek; 1964; 30():385-94. PubMed ID: 14274131 [No Abstract] [Full Text] [Related]
5. Influence of the redox potential on the activity of Clostridium pasteurianum and Chromatium hydrogenases. Fernandez VM; Munilla R; Ballesteros A Arch Biochem Biophys; 1982 Apr; 215(1):129-35. PubMed ID: 7046637 [No Abstract] [Full Text] [Related]
11. Enzymic comparisons of the inorganic sulfur metabolism in autotrophic and heterotrophic Thiobacillus ferrooxidans. Tuovinen PH; Kelley BC; Nicholas DJ Can J Microbiol; 1976 Jan; 22(1):109-13. PubMed ID: 175905 [TBL] [Abstract][Full Text] [Related]
13. Redox potentials of flavocytochromes c from the phototrophic bacteria, Chromatium vinosum and Chlorobium thiosulfatophilum. Meyer TE; Bartsch RG; Caffrey MS; Cusanovich MA Arch Biochem Biophys; 1991 May; 287(1):128-34. PubMed ID: 1654798 [TBL] [Abstract][Full Text] [Related]
14. [Enzymes of carbohydrate metabolism in phototrophic bacteria]. Krasil'nikova EN Mikrobiologiia; 1975; 44(1):5-10. PubMed ID: 125844 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of soluble electron transfer proteins from Chromatium purpuratum. Kerfeld CA; Chan C; Hirasawa M; Kleis-SanFrancisco S; Yeates TO; Knaff DB Biochemistry; 1996 Jun; 35(24):7812-8. PubMed ID: 8672482 [TBL] [Abstract][Full Text] [Related]
16. Utilization of reducing power in growing cultures of Chromatium. van Gemerden H Arch Mikrobiol; 1968; 64(2):111-7. PubMed ID: 5709372 [No Abstract] [Full Text] [Related]
17. On the ATP generation by Chromatium in darkness. van Gemerden H Arch Mikrobiol; 1968; 64(2):118-24. PubMed ID: 5709373 [No Abstract] [Full Text] [Related]
18. Continuous culture of thiorhodaceae. Sulfide and sulfur limited growth of Chromatium vinosum. Van Gemerden H; Jannasch HW Arch Mikrobiol; 1971; 79(4):345-53. PubMed ID: 5126079 [No Abstract] [Full Text] [Related]
19. The nitrogen fixation system of photosynthetic bacteria. II. Chromatium nitrogenase activity linked to photochemically generated assimilatory power. Yoch DC; Arnon DI Biochim Biophys Acta; 1970 Mar; 197(2):180-4. PubMed ID: 5416108 [No Abstract] [Full Text] [Related]
20. Genes involved in hydrogen and sulfur metabolism in phototrophic sulfur bacteria. Dahl C; Rákhely G; Pott-Sperling AS; Fodor B; Takács M; Tóth A; Kraeling M; Gy"orfi K; Kovács A; Tusz J; Kovács KL FEMS Microbiol Lett; 1999 Nov; 180(2):317-24. PubMed ID: 10556728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]