These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye. Laris PC; Pershadsingh HA; Johnstone RM Biochim Biophys Acta; 1976 Jun; 436(2):475-88. PubMed ID: 1276225 [TBL] [Abstract][Full Text] [Related]
8. Bimodal effects of cellular amino acids on Na+-dependent amino acid transport in Ehrlich cells. Johnstone RM; Laris PC Biochim Biophys Acta; 1980 Jul; 599(2):715-30. PubMed ID: 7407111 [TBL] [Abstract][Full Text] [Related]
9. Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells. Hoffmann EK; Lambert IH J Physiol; 1983 May; 338():613-25. PubMed ID: 6875973 [TBL] [Abstract][Full Text] [Related]
10. The influence of cellular amino acids and the Na+ : K+ pump on the membrane potential of the Ehrlich ascites tumor cell. Laris PC; Bootman M; Pershadsingh HA; Johnstone RM Biochim Biophys Acta; 1978 Sep; 512(2):397-414. PubMed ID: 213114 [TBL] [Abstract][Full Text] [Related]
11. Na+-linked cotransport of glycine in vesicles of Ehrlich cells. Shapiro MP; Heinz E Biochim Biophys Acta; 1980 Aug; 600(3):898-911. PubMed ID: 7407150 [TBL] [Abstract][Full Text] [Related]
12. Na+-gradient-stimulated AIB transport in membrane vesicles from Ehrlich ascites cells. Colombini M; Johnstone RM J Membr Biol; 1974; 18(3-4):315-34. PubMed ID: 4138476 [No Abstract] [Full Text] [Related]
13. Modified transport substrates as probes for intramembrane gradients. Christensen HN; De Cespedes C; Handlogten ME; Ronquist G Ann N Y Acad Sci; 1974 Feb; 227():355-79. PubMed ID: 4133305 [No Abstract] [Full Text] [Related]
14. The involvement of the membrane oxidoreduction system in stimulating amino acid uptake in Ehrlich ascites tumor cells. Yamamoto S; Kawasaki T Biochim Biophys Acta; 1981 Jun; 644(2):192-200. PubMed ID: 7260073 [TBL] [Abstract][Full Text] [Related]
15. Cation gradients, ATP and amino acid accumulation in Ehrlich ascites cells. Potashner SJ; Johnstone RM Biochim Biophys Acta; 1971 Mar; 233(1):91-103. PubMed ID: 5579140 [No Abstract] [Full Text] [Related]
16. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate. Reid M; Gibb LE; Eddy AA Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255 [TBL] [Abstract][Full Text] [Related]
17. Uptake of amino acids in reconstituted vesicles derived from plasma membranes of Ehrlich ascites cells. Johnstone RM; Bardin C J Cell Physiol; 1976 Dec; 89(4):801-4. PubMed ID: 1034639 [TBL] [Abstract][Full Text] [Related]
18. Transport in mouse ascites tumor cells: symport of Na+ with amino acids. Eddy AA; Johnson ER Methods Enzymol; 1989; 173():771-7. PubMed ID: 2674622 [No Abstract] [Full Text] [Related]
19. Cations, transport and exchange diffusion of methionine in Ehrlich ascites cells. Potashner S; Johnston RM Biochim Biophys Acta; 1970 Jun; 203(3):445-56. PubMed ID: 5523743 [No Abstract] [Full Text] [Related]
20. Role of protein dissociation in the transport of acidic amino acids by the Ehrlich ascites tumor cell. Garcia-Sancho J; Sanchez A; Christensen HN Biochim Biophys Acta; 1977 Jan; 464(2):295-312. PubMed ID: 12815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]