BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 530897)

  • 1. [Comparative evaluation of biodestruction of polyurethanes synthetized on the basis of simple and complex polyesters].
    Lipatova TE; Kolomiĭtsev AK; Tereshchenko TL; Iatsenko VP; Alekseeva TT
    Polim Med; 1979; 9(2):107-17. PubMed ID: 530897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Chemical composition of linear polyurethanes and the rate of their destruction in physiological solution and animal body].
    Lipatova TE; Alekseeva TT; Bakalo LA; Tereshchenko TL
    Polim Med; 1980; 10(1):19-29. PubMed ID: 7443588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Role of macrophages and foreign body type giant cells in the biodestruction process of polyurethane adhesive tissue].
    Pkhakadze GA; Tereshchenko TL; Iatsenko VP; Kolomiĭtsev AK
    Polim Med; 1977; 7(2):105-12. PubMed ID: 600881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative evaluation of the biostability of a poly (ether urethane) in the intraocular, intramuscular, and subcutaneous environments.
    Christ FR; Buchen SY; Fencil DA; Knight PM; Solomon KD; Apple DJ
    J Biomed Mater Res; 1992 May; 26(5):607-29. PubMed ID: 1512282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Tissue reaction to implanted polyurethane designed for parts of the artificial heart].
    Staniszewska-Kuś J; Paluch D; Krzemień-Dabrowska A; Zywicka B; Solski L
    Polim Med; 1995; 25(3-4):3-18. PubMed ID: 8610064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in biodegradable synthetic polymers.
    Gunatillake P; Mayadunne R; Adhikari R
    Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of biomaterials by phagocyte-derived oxidants.
    Sutherland K; Mahoney JR; Coury AJ; Eaton JW
    J Clin Invest; 1993 Nov; 92(5):2360-7. PubMed ID: 8227352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo kinetic degradation analysis and biocompatibility of aliphatic polyester polyurethanes.
    Knight PT; Kirk JT; Anderson JM; Mather PT
    J Biomed Mater Res A; 2010 Aug; 94(2):333-43. PubMed ID: 20583334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-curable and biodegradable prepolymers.
    Kobayashi H; Hyon SH; Ikada Y
    J Biomed Mater Res; 1991 Dec; 25(12):1481-94. PubMed ID: 1794996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hydrolytic stability of Mitrathane (a polyurethane urea)--an x-ray photoelectron spectroscopy study.
    Paynter RW; Askill IN; Glick SH; Guidoin R
    J Biomed Mater Res; 1988 Aug; 22(8):687-98. PubMed ID: 3215906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Destruction of KL-3 medical adhesive tissue in physiologically active systems and animal bodies].
    Lipatowa TE; Nowikowa OE; Pchakadze GA; Nowikowa TJ
    Polim Med; 1974; 4(4):313-21. PubMed ID: 4478706
    [No Abstract]   [Full Text] [Related]  

  • 14. Enzyme-biomaterial interactions: effect of biosystems on degradation of polyurethanes.
    Santerre JP; Labow RS; Adams GA
    J Biomed Mater Res; 1993 Jan; 27(1):97-109. PubMed ID: 8421004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo biostability of polysiloxane polyether polyurethanes: resistance to biologic oxidation and stress cracking.
    Ward R; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2006 Jun; 77(3):580-9. PubMed ID: 16506175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications.
    Sarkar D; Yang JC; Gupta AS; Lopina ST
    J Biomed Mater Res A; 2009 Jul; 90(1):263-71. PubMed ID: 18496869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the healing process after implantation of synthetic material called Tegmentum consisting of polyester mesh covered with polyurethane in rat peritoneum.
    Fila M; Banach M; Zwoliński R
    Polim Med; 2000; 30(3-4):89-98. PubMed ID: 11288603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers.
    Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo resorption of a biodegradable polyurethane foam, based on 1,4-butanediisocyanate: a three-year subcutaneous implantation study.
    van Minnen B; van Leeuwen MB; Kors G; Zuidema J; van Kooten TG; Bos RR
    J Biomed Mater Res A; 2008 Jun; 85(4):972-82. PubMed ID: 17907243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Testing of polyurethane as an implant for its biological compatibility].
    Kothe HW
    Z Exp Chir Transplant Kunstliche Organe; 1985; 18(3):177-81. PubMed ID: 4036229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.