BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 530897)

  • 21. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Studies on perfecting Polish-made linen threads for surgical use].
    Jarosz-Cichulska H
    Polim Med; 1988; 18(1-2):3-49. PubMed ID: 3064051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization.
    Lligadas G; Ronda JC; Galià M; Cádiz V
    Biomacromolecules; 2007 Feb; 8(2):686-92. PubMed ID: 17291093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Biostability of plastic endotheses].
    Roggendorf E
    Polim Med; 1976; 6(1):13-26. PubMed ID: 1273007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [New textile vascular prostheses made of polymer composition materials].
    Kas'ianenko VV; Kas'ianov VA; Mungalov DD; Stupin IV; Filatov VN
    Polim Med; 1987; 17(1-2):43-55. PubMed ID: 3441453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrolytic degradation behavior of biodegradable polyetheresteramide-based polyurethane copolymers.
    Liu C; Gu Y; Qian Z; Fan L; Li J; Chao G; Tu M; Jia W
    J Biomed Mater Res A; 2005 Nov; 75(2):465-71. PubMed ID: 16094664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. T lymphocyte modification with the UTA microporous polyurethane vascular prosthesis: in vivo studies in rats.
    Marois Y; Roy R; Marois M; Guidoin RG; von Maltzahn WW; Kowligi R; Eberhart RC
    Clin Invest Med; 1992 Apr; 15(2):141-9. PubMed ID: 1591896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [X-ray diffraction analysis of disintegration of polyglycolic acid suture material both in vivo and in model media].
    Razumova LL; Daurova TT; Veretennikova AA; Privalova LG; Gumargalieva KZ
    Polim Med; 1979; 9(2):119-25. PubMed ID: 43508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo biocompatibility of three different chemical compositions of Ricinus communis polyurethane.
    Barros VM; Rosa AL; Beloti MM; Chierice G
    J Biomed Mater Res A; 2003 Oct; 67(1):235-9. PubMed ID: 14517881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of polyetherurethane by subcutaneous implantation into rats. I. Molecular weight change and surface morphology.
    Xi T; Sato M; Nakamura A; Kawasaki Y; Umemura T; Tsuda M; Kurokawa Y
    J Biomed Mater Res; 1994 Apr; 28(4):483-90. PubMed ID: 8006053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies.
    Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Connective elements for internal organs made of biocompatible polymers].
    Belykh SI; Davydov AB; Firsova EV
    Polim Med; 1987; 17(1-2):61-77. PubMed ID: 3441454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of novel blood-compatible soluble chemically cross-linked polyurethanes with excellent mechanical performance for biomedical applications.
    Liu Z; Wu X; Yang X; Liu D; Jun C; Sun R; Liu X; Li F
    Biomacromolecules; 2005; 6(3):1713-21. PubMed ID: 15877398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone attachment to hydroxyapatite coated polymers.
    Boone PS; Zimmerman MC; Gutteling E; Lee CK; Parsons JR; Langrana N
    J Biomed Mater Res; 1989 Aug; 23(A2 Suppl):183-99. PubMed ID: 2674147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Polyurethane implant in subcutaneous connective tissue. Histological study in rats].
    De Carvalho AC; Holland R; Milanezi LA; Okamoto T
    Rev Fac Odontol Aracatuba; 1976; 5(1-2):63-7. PubMed ID: 1077591
    [No Abstract]   [Full Text] [Related]  

  • 37. Fabrication, implantation, elution, and retrieval of a steroid-loaded polycaprolactone subretinal implant.
    Beeley NR; Rossi JV; Mello-Filho PA; Mahmoud MI; Fujii GY; de Juan E; Varner SE
    J Biomed Mater Res A; 2005 Jun; 73(4):437-44. PubMed ID: 15900615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biostability of polyurethanes.
    Hennig E; John A; Zartnack F; Lemm W; Bücherl ES; Wick G; Gerlach K
    Z Exp Chir Transplant Kunstliche Organe; 1989; 22(4):204-20. PubMed ID: 2781835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytological evaluation of the tissue-implant reaction associated with subcutaneous implantation of polymers coated with titaniumcarboxonitride in vivo.
    Lehle K; Lohn S; Reinerth GG; Schubert T; Preuner JG; Birnbaum DE
    Biomaterials; 2004 Nov; 25(24):5457-66. PubMed ID: 15142726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Assessment of tissue responsiveness after implantation of a new block copolymer into rat tissue].
    Prowans P; el Fray M; Deskur Z; Dobrzycki W
    Polim Med; 1999; 29(1-2):35-9. PubMed ID: 10876647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.