BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 5311999)

  • 1. Some aspects of (-)-citramalic acid accumulation by respiration-deficient mutants of yeasts.
    Amaha M; Sai T
    Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:G15-6. PubMed ID: 5311999
    [No Abstract]   [Full Text] [Related]  

  • 2. Catabolite repression and lagtime during alpha-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis.
    van Wijk R
    Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:I11-2. PubMed ID: 5312030
    [No Abstract]   [Full Text] [Related]  

  • 3. Physiological functions of NAD- and NADP-linked malic enzymes in Escherichia coli.
    Murai T; Tokushige M; Nagai J; Katsuki H
    Biochem Biophys Res Commun; 1971 May; 43(4):875-81. PubMed ID: 4397922
    [No Abstract]   [Full Text] [Related]  

  • 4. The effect of temperature on the metabolism of baker's yeast growing on continuous culture.
    Jones RC; Hough JS
    J Gen Microbiol; 1970 Jan; 60(1):107-16. PubMed ID: 4321211
    [No Abstract]   [Full Text] [Related]  

  • 5. [Genetics and biochemistry of a respiration-deficient mutant of yeast].
    Miyake S
    Tanpakushitsu Kakusan Koso; 1968 Nov; 13(12):1053-60. PubMed ID: 4886814
    [No Abstract]   [Full Text] [Related]  

  • 6. The participation of ornithine and citrulline in the regulation of arginine metabolism in Saccharomyces cerevisiae.
    Ramos F; Thuriaux P; Wiame JM; Bechet J
    Eur J Biochem; 1970 Jan; 12(1):40-7. PubMed ID: 5434282
    [No Abstract]   [Full Text] [Related]  

  • 7. Pyruvate holocarboxylase formation from the apoenzyme and D-biotin in Saccharomyces cerevisiae.
    Sundaram TK; Cazzulo JJ; Kornberg HL
    Arch Biochem Biophys; 1971 Apr; 143(2):609-16. PubMed ID: 5558138
    [No Abstract]   [Full Text] [Related]  

  • 8. Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae.
    Bechet J; Greenson M; Wiame JM
    Eur J Biochem; 1970 Jan; 12(1):31-9. PubMed ID: 5434281
    [No Abstract]   [Full Text] [Related]  

  • 9. Specific effect of unsaturated fatty acid depletion on mitochondrial oxidative phosphorylation in Saccharomyces cerevisiae.
    Proudlock JW; Haslam JM; Linnane AW
    Biochem Biophys Res Commun; 1969 Nov; 37(5):847-52. PubMed ID: 5353094
    [No Abstract]   [Full Text] [Related]  

  • 10. [On the catalysis principle of malate synthase].
    Eggerer H; Klette A
    Eur J Biochem; 1967 Jun; 1(4):447-75. PubMed ID: 6061964
    [No Abstract]   [Full Text] [Related]  

  • 11. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease.
    Grenson M; Hou C; Crabeel M
    J Bacteriol; 1970 Sep; 103(3):770-7. PubMed ID: 5474888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of induced alpha-glucosidase activity in the absence of inducer.
    Bell RG
    Can J Biochem; 1969 Jul; 47(7):677-84. PubMed ID: 5795781
    [No Abstract]   [Full Text] [Related]  

  • 13. Genetics of population changes during continuous culture of Saccharomyces.
    Thornton R; Law E; Johnston J
    Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:C7-8. PubMed ID: 5311953
    [No Abstract]   [Full Text] [Related]  

  • 14. [Deficiency of cytochrome oxidase in Saccharomyces cerevisiae strains requiring threonine for growth. 1. Genetic relationships].
    Surdin Y; Robichon-Szulmajster H; Lachowicz TM; Slonimski PP
    Eur J Biochem; 1969 Feb; 7(4):526-30. PubMed ID: 4304815
    [No Abstract]   [Full Text] [Related]  

  • 15. Carbon dioxide fixation and phosphoenolpyruvate carboxylase in Ferrobacillus ferrooxidans.
    Din GA; Suzuki I; Lees H
    Can J Microbiol; 1967 Nov; 13(11):1413-9. PubMed ID: 4294210
    [No Abstract]   [Full Text] [Related]  

  • 16. Physiological advantage of the mechanism of the tryptophan synthetase reaction.
    Manney TR
    J Bacteriol; 1970 May; 102(2):483-8. PubMed ID: 5419263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological rhythms in petite mutation.
    Kraepelin G
    Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:C13-4. PubMed ID: 5311944
    [No Abstract]   [Full Text] [Related]  

  • 18. Genetic control of the metabolism of propionate by Escherichia coli K12.
    Kay WW
    Biochim Biophys Acta; 1972 May; 264(3):508-21. PubMed ID: 4554901
    [No Abstract]   [Full Text] [Related]  

  • 19. Formation of beta-methylmalate from propionate and glyoxylate.
    Nakano H; Takagi Y; Katsuki H
    Biochem Biophys Res Commun; 1970 Dec; 41(6):1605-10. PubMed ID: 5487877
    [No Abstract]   [Full Text] [Related]  

  • 20. Threonine deaminases from Saccharomyces cerevisiae mutationally altered in regulatory properties.
    Betz JL; Hereford LM; Magee PT
    Biochemistry; 1971 May; 10(10):1818-24. PubMed ID: 5563764
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.