These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 5313511)
1. The role of quinate and shikimate in the metabolism of lactobacilli. Whiting GC; Coggins RA Antonie Van Leeuwenhoek; 1971; 37(1):33-49. PubMed ID: 5313511 [No Abstract] [Full Text] [Related]
3. (-)-3t,4t-Dihydroxycyclohexane-1c-carboxylate, a new quinate metabolite of Lactobacillus plantarum. Whiting GC; Coggins RA J Sci Food Agric; 1973 Aug; 24(8):897-904. PubMed ID: 4731349 [No Abstract] [Full Text] [Related]
4. Metabolism of shikimate and quinate by Aspergillus niger and its regulation. Cain RB Biochem J; 1972 Apr; 127(2):15P-16P. PubMed ID: 5076648 [No Abstract] [Full Text] [Related]
5. Genetical and biochemical evidence for further interrelationships between the polyaromatic synthetic and the quinate-shikimate catabolic pathways in Neurospora crassa. Case ME; Giles NH; Doy CH Genetics; 1972 Jul; 71(3):337-48. PubMed ID: 4261015 [No Abstract] [Full Text] [Related]
6. The metabolism of quinate by Acinetobacter calco-aceticus. Tresguerres ME; De Torrontegui G; Cánovas JL Arch Mikrobiol; 1970; 70(2):110-8. PubMed ID: 5429630 [No Abstract] [Full Text] [Related]
7. Direct induction in wild-type Neurospora crassa of mutants (qa-1 c ) constitutive for the catabolism of quinate and shikimate. Partridge CW; Case ME; Giles NH Genetics; 1972 Nov; 72(3):411-7. PubMed ID: 4264707 [TBL] [Abstract][Full Text] [Related]
8. Homofermentative Lactobacilli of ciders including Lactobacillus mali nov. spec. Carr JG; Davies PA J Appl Bacteriol; 1970 Dec; 33(4):768-74. PubMed ID: 5516600 [No Abstract] [Full Text] [Related]
9. A new nicotinamide-adenine dinucleotide-dependent hydroaromatic dehydrogenase of Lactobacillus plantarum and its role in formation of (minus)t-3,t-4-dihydroxycyclohexane-c-1-carboxylate. Whiting GC; Coggins RA Biochem J; 1974 Jul; 141(1):35-42. PubMed ID: 4375976 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella. Control of quinate oxidation by protocatechuate. Tresguerres ME; de Torrontegui G; Ingledew WM; Cánovas JL Eur J Biochem; 1970 Jul; 14(3):445-50. PubMed ID: 5479375 [No Abstract] [Full Text] [Related]
11. The oxidation of D-quinate and related acids by Acetomonas oxydans. Whiting GC; Coggins RA Biochem J; 1967 Jan; 102(1):283-93. PubMed ID: 6030289 [TBL] [Abstract][Full Text] [Related]
12. 3-dehydroquinate production by oxidative fermentation and further conversion of 3-dehydroquinate to the intermediates in the shikimate pathway. Adachi O; Tanasupawat S; Yoshihara N; Toyama H; Matsushita K Biosci Biotechnol Biochem; 2003 Oct; 67(10):2124-31. PubMed ID: 14586099 [TBL] [Abstract][Full Text] [Related]
13. Hydroaromatic equilibration during biosynthesis of shikimic acid. Knop DR; Draths KM; Chandran SS; Barker JL; von Daeniken R; Weber W; Frost JW J Am Chem Soc; 2001 Oct; 123(42):10173-82. PubMed ID: 11603966 [TBL] [Abstract][Full Text] [Related]
14. Quinate metabolism in Pseudomonas aeruginosa. Ingledew WM; Tai CC Can J Microbiol; 1972 Dec; 18(12):1817-24. PubMed ID: 4630966 [No Abstract] [Full Text] [Related]
15. Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Teramoto H; Inui M; Yukawa H Appl Environ Microbiol; 2009 Jun; 75(11):3461-8. PubMed ID: 19376919 [TBL] [Abstract][Full Text] [Related]
16. Control of metabolic flux in the shikimate and quinate pathways. Hawkins AR; Lamb HK; Roberts CF Prog Ind Microbiol; 1994; 29():195-220. PubMed ID: 7765125 [No Abstract] [Full Text] [Related]
17. High shikimate production from quinate with two enzymatic systems of acetic acid bacteria. Adachi O; Ano Y; Toyama H; Matsushita K Biosci Biotechnol Biochem; 2006 Oct; 70(10):2579-82. PubMed ID: 17031026 [TBL] [Abstract][Full Text] [Related]
18. Nutritional response to feeding L-phenyllactic, shikimic and D-quinic acids in weanling rats. Seifter E; Rettura G; Reissman D; Kambosos D; Levenson SM J Nutr; 1971 Jun; 101(6):747-54. PubMed ID: 5103847 [No Abstract] [Full Text] [Related]
19. The inducible quinate-shikimate catabolic pathway in Neurospora crassa: genetic organization. Chaleff RS J Gen Microbiol; 1974 Apr; 81(2):337-55. PubMed ID: 4275708 [No Abstract] [Full Text] [Related]
20. Conversion of quinate to 3-dehydroshikimate by Ca-alginate-immobilized membrane of Gluconobacter oxydans IFO 3244 and subsequent asymmetric reduction of 3-dehydroshikimate to shikimate by immobilized cytoplasmic NADP-shikimate dehydrogenase. Adachi O; Ano Y; Shinagawa E; Yakushi T; Matsushita K Biosci Biotechnol Biochem; 2010; 74(12):2438-44. PubMed ID: 21150112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]