These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Study of secondary structure of ribosomal ribonucleic acids. Surovaya AN; Borisova OF; Minyat EE Mol Biol; 1972; 6(3):328-34. PubMed ID: 4566640 [No Abstract] [Full Text] [Related]
7. Experimental determination of interacting sequences in ribosomal RNA. Ross A; Brimacombe R Nature; 1979 Sep; 281(5729):271-6. PubMed ID: 95206 [No Abstract] [Full Text] [Related]
8. Fluorospectrophotometric characterization of nucleic acid-acridine orange complexes. II. Interaction of nucleic acids or nucleoproteins and acridine orange. Yamagata S; Minamishima Y; Morisawa S Osaka City Med J; 1972; 18(1):85-94. PubMed ID: 4125121 [No Abstract] [Full Text] [Related]
9. Fluorospectrophotometric characterization of nucleic acid-acridine orange complexes. I. Metachromatic behavior of acridine orange (concentration effect). Yamagata S; Minamishima Y; Morisawa S Osaka City Med J; 1972; 18(1):77-83. PubMed ID: 4125120 [No Abstract] [Full Text] [Related]
10. Use of the 295- to 300-nanometer circular dichroism through of ribonucleic acid to study helix winding: effect of acridine orange. Hoener BA; Sokoloski TD; Mitscher LA Antimicrob Agents Chemother; 1973 Oct; 4(4):455-8. PubMed ID: 4791307 [TBL] [Abstract][Full Text] [Related]
11. Denaturation of RNA and DNA in situ induced by acridine orange. Darzynkiewicz Z; Evenson D; Kapuscinski J; Melamed MR Exp Cell Res; 1983 Oct; 148(1):31-46. PubMed ID: 6195003 [TBL] [Abstract][Full Text] [Related]
12. The conformation of the RNA in cowpea chlorotic mottle virus: dye-binding studies. Adolph KW Eur J Biochem; 1975 May; 53(2):449-55. PubMed ID: 237760 [TBL] [Abstract][Full Text] [Related]
13. Histochemical observations on Mycoplasma after staining with acridine orange. Jasper DE; Jain NC Appl Microbiol; 1966 Sep; 14(5):720-3. PubMed ID: 4165809 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous staining of ribonucleic and deoxyribonucleic acids in unfixed cells using acridine orange in a flow cytofluorometric system. Traganos F; Darzynkiewicz Z; Sharpless T; Melamed MR J Histochem Cytochem; 1977 Jan; 25(1):46-56. PubMed ID: 64567 [TBL] [Abstract][Full Text] [Related]
15. Immunochemical studies of foot-and-mouth disease. 3. Acridine orange staining of agar gel precipitin reactions. Cowan KM; Gravex JH Virology; 1968 Mar; 34(3):544-8. PubMed ID: 4172187 [No Abstract] [Full Text] [Related]
16. Differences in the red fluorescence of acridine orange bound to single-stranded RNA and DNA. Ichimura S Biopolymers; 1975 May; 14(5):1033-47. PubMed ID: 1156642 [No Abstract] [Full Text] [Related]
17. Quantitative determination of single-stranded sections in DNA using the fluorescent probe acridine orange. Ichimura S; Zama M; Fujita H Biochim Biophys Acta; 1971 Jul; 240(4):485-95. PubMed ID: 4941738 [No Abstract] [Full Text] [Related]
18. Fluorospectrophotometric characterization of nucleic acid-acridine orange complexes. 3. Fluorospectral analysis of AO-stained cells. Yamagata S; Minamishima Y; Morisawa S Osaka City Med J; 1972; 18(1):95-100. PubMed ID: 4125122 [No Abstract] [Full Text] [Related]
19. [Study of interactions of DNA and acridine orange by fluorescence]. Fredericq E Arch Int Physiol Biochim; 1971 Oct; 79(4):832-3. PubMed ID: 4110233 [No Abstract] [Full Text] [Related]
20. Association of a ribonuclease with the 50-S ribosomal subunit of Escherichia coli MRE 600. Ceri H; Maeba PY Biochim Biophys Acta; 1973 Jun; 312(2):337-48. PubMed ID: 4198762 [No Abstract] [Full Text] [Related] [Next] [New Search]