These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 5316162)

  • 41. Behavioral changes in chronic spinal frog.
    Farel PB; McLean JG
    Brain Res; 1976 Apr; 106(2):418-22. PubMed ID: 1084208
    [No Abstract]   [Full Text] [Related]  

  • 42. Habituation and sensitization of spinal interneuron activity in acute spinal cat.
    Groves PM; De Marco R; Thompson RF
    Brain Res; 1969 Jul; 14(2):521-5. PubMed ID: 5794923
    [No Abstract]   [Full Text] [Related]  

  • 43. Habituation and sensitization of the flexor reflex after asphyxiation of the spinal cord.
    Pearson JA; MacDonald JF
    Brain Res; 1973 Aug; 58(2):427-35. PubMed ID: 4518841
    [No Abstract]   [Full Text] [Related]  

  • 44. [Redistribution of basophilia in frog spinal cord motoneurons during post-tetanic potentiation and depression].
    Aleĭnikova TV; Aleínikov IuP; Pesenko IL
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1973; 112(4):48-53. PubMed ID: 4763261
    [No Abstract]   [Full Text] [Related]  

  • 45. Stimulus generalization of habituation in spinal interneurons.
    Glanzman DL; Groves PM; Thompson RF
    Physiol Behav; 1972 Jan; 8(1):155-8. PubMed ID: 4665326
    [No Abstract]   [Full Text] [Related]  

  • 46. Excitability of cutaneous afferent terminals during habituation and sensitization in acute spinal cat.
    Groves PM; Glanzman DL; Patterson MM; Thompson RF
    Brain Res; 1970 Mar; 18(2):388-92. PubMed ID: 4252041
    [No Abstract]   [Full Text] [Related]  

  • 47. Dishabituation of flexor withdrawal activity mediated by the functionally transected human spinal cord.
    Fuhrer MJ
    Brain Res; 1973 Dec; 63():93-102. PubMed ID: 4764323
    [No Abstract]   [Full Text] [Related]  

  • 48. Inhibition of spinal interneuronal activity by repeated cutaneous stimulation: a possible substrate of flexor reflex habituation.
    Macdonald JF; Pearson JA
    J Neurobiol; 1979 Jan; 10(1):79-92. PubMed ID: 521811
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [ANALYSIS OF SUPRASPINAL EFFECT OF THE RETICULAR FORMATION OF THE BRAIN STEM ON THE MECHANISM OF FORMATION OF FLEXOR DOMINATION].
    BERZILOVA OV; SKURATOVA SA; SHEIKHON FD
    Tr Inst Norm Patol Fiziol; 1964; 117():29-30. PubMed ID: 14245010
    [No Abstract]   [Full Text] [Related]  

  • 50. [Synaptic effects on frog motor neurons during stimulation of the spinal cord dorsal roots and dorsal columns].
    Shiriaev BI
    Biull Eksp Biol Med; 1971 May; 71(5):6-10. PubMed ID: 5569517
    [No Abstract]   [Full Text] [Related]  

  • 51. Linear combinations of primitives in vertebrate motor control.
    Mussa-Ivaldi FA; Giszter SF; Bizzi E
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7534-8. PubMed ID: 8052615
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of exercise and fetal spinal cord implants on the H-reflex in chronically spinalized adult rats.
    Skinner RD; Houle JD; Reese NB; Berry CL; Garcia-Rill E
    Brain Res; 1996 Aug; 729(1):127-31. PubMed ID: 8874885
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Peroperative stimulation of the spinal cord and the EMG response].
    Fröhlich J; Nádvorník P; Galanda M; Sedlák P
    Cesk Neurol Neurochir; 1980 Nov; 43(6):370-3. PubMed ID: 7002327
    [No Abstract]   [Full Text] [Related]  

  • 54. [Mechanisms of stepping rhythm formation during epidural spinal cord stimulation in decerebrated and spinal cord transected cats].
    Bogacheva IN; Nikitin OA; Musienko PE; Savokhin AA; Gerasimenko IuP
    Biofizika; 2009; 54(3):529-36. PubMed ID: 19569517
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vesico-somatic reflexes in the chronic spinal cat.
    McPherson A
    J Physiol; 1966 Jul; 185(1):197-204. PubMed ID: 5229398
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Propagation of cutaneous and muscular sensory impulse in nerves and spinal cord of the frog, Rana esculenta].
    SZABO T
    C R Seances Soc Biol Fil; 1953 Feb; 147(3-4):192-6. PubMed ID: 13067440
    [No Abstract]   [Full Text] [Related]  

  • 57. Reversal of sign of long spinal reflexes dependent on the phase of the step cycle in the high decerebrate cat.
    Miller S; Ruit JB; Van der Meché FG
    Brain Res; 1977 Jun; 128(3):447-59. PubMed ID: 884493
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Slow ventral root potentials in the spinal frog (Xenopus laevis).
    Meij HS; Meyer BJ
    S Afr Med J; 1970 Aug; 44(31):893-7. PubMed ID: 5505873
    [No Abstract]   [Full Text] [Related]  

  • 59. Activation of spinal locomotor circuits in the decerebrated cat by spinal epidural and/or intraspinal electrical stimulation.
    Lavrov I; Musienko PE; Selionov VA; Zdunowski S; Roy RR; Edgerton VR; Gerasimenko Y
    Brain Res; 2015 Mar; 1600():84-92. PubMed ID: 25446455
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Demonstration and functional role of antidromically activated interneurons in the frog spinal cord].
    Saadé NE; Chanelet J; Lonchampt P
    C R Seances Soc Biol Fil; 1972; 166(10):1261-9. PubMed ID: 4663941
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.