These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 5317388)

  • 21. Effects of hypothyroidism on the enzymes for biogenic amines in the developing rat brain.
    Vaccari A; Valcana T; Timiras PS
    Pharmacol Res Commun; 1977 Sep; 9(8):763-80. PubMed ID: 22088
    [No Abstract]   [Full Text] [Related]  

  • 22. 5-hydroxyindole metabolism in rat brain. A study of intermediate metabolism using the technique of tryptophan loading. II. Applications and drug studies.
    Eccleston D; Ashcroft GW; Crawford TB
    J Neurochem; 1965 Jun; 12(6):493-503. PubMed ID: 5294373
    [No Abstract]   [Full Text] [Related]  

  • 23. The maturation of indoleamine metabolism in the lateral eye of the mouse.
    Smith MD; Baker PC
    Comp Biochem Physiol A Comp Physiol; 1974 Oct; 49(2A):281-6. PubMed ID: 4153872
    [No Abstract]   [Full Text] [Related]  

  • 24. [The pineal body].
    Montilla Lopez P
    Rev Clin Esp; 1972 Jul; 126(1):1-12 contd. PubMed ID: 4404675
    [No Abstract]   [Full Text] [Related]  

  • 25. Movements and synthesis of 5-hydroxytryptamine in the isolated superior cervical ganglion of the rat.
    Roch-Ramel F
    Eur J Pharmacol; 1968 Mar; 2(5):355-66. PubMed ID: 5301303
    [No Abstract]   [Full Text] [Related]  

  • 26. Uptake of 14C-labelled 5-hydroxytryptophan and 5-hydroxytryptamine by separated rat renal tubules.
    Inagaki C
    Jpn J Pharmacol; 1977 Feb; 27(1):79-86. PubMed ID: 301211
    [No Abstract]   [Full Text] [Related]  

  • 27. Chronic effect of the irreversible and reversible selective MAO-A inhibitors on rat pineal melatonin biosynthesis.
    Oxenkrug GF; Requintina PJ; McIntyre IM; White K
    J Neural Transm Suppl; 1994; 41():381-4. PubMed ID: 7523585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [5-hydroxytryptophan decarboxylase and monoamine oxidase activities in rat and mouse kidney after experimental uranyl nitrate poisoning].
    Bastide J; Bastide P
    Ann Biol Clin (Paris); 1968; 26(10):1239-45. PubMed ID: 5303725
    [No Abstract]   [Full Text] [Related]  

  • 29. Regulation of pineal rhythms in chickens: refractory period and nonvisual light perception.
    Binkley S; Macbride SE; Klein DC; Ralph CL
    Endocrinology; 1975 Apr; 96(4):848-53. PubMed ID: 1120473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in 5-hydroxytryptamine metabolism during anaphylactic shock in rats.
    Csaba B; Went M
    Int Arch Allergy Appl Immunol; 1972; 43(1):25-9. PubMed ID: 4347202
    [No Abstract]   [Full Text] [Related]  

  • 31. TRYPTOPHAN HYDROXYLATION IN CARCINOID TUMOURS.
    GRAHAME-SMITH DG
    Biochim Biophys Acta; 1964 Apr; 86():176-9. PubMed ID: 14166856
    [No Abstract]   [Full Text] [Related]  

  • 32. Effects of 5-hydroxytryptophan on serotonin in nerve endings.
    McBride WJ; Aprison MH; Hingtgen JN
    J Neurochem; 1974 Aug; 23(2):385-91. PubMed ID: 4547408
    [No Abstract]   [Full Text] [Related]  

  • 33. Enzymes of the human pineal body.
    Otani T; Györkey F; Farrell G
    J Clin Endocrinol Metab; 1968 Mar; 28(3):349-54. PubMed ID: 5300407
    [No Abstract]   [Full Text] [Related]  

  • 34. Circadian regulation of melatonin in the retina of Xenopus laevis: limitation by serotonin availability.
    Cahill GM; Besharse JC
    J Neurochem; 1990 Feb; 54(2):716-9. PubMed ID: 2299362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Xenopus tadpole melanophores are controlled by dark and light and melatonin without influence of time of day.
    Binkley S; Mosher K; Rubin F; White B
    J Pineal Res; 1988; 5(1):87-97. PubMed ID: 3367263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [PHYSIOLOGICAL ACTION OF SEROTONIN].
    MALMEJAC J; BOULU R; BIANCHI M
    Pathol Biol; 1964 Nov; 12():1122-36. PubMed ID: 14224290
    [No Abstract]   [Full Text] [Related]  

  • 37. Effect of gamma-aminobutyric acid on brain serotonin and catecholamines.
    Yessaian NH; Armenian AR; Buniatian HC
    J Neurochem; 1969 Oct; 16(10):1425-33. PubMed ID: 5309558
    [No Abstract]   [Full Text] [Related]  

  • 38. [Norepinephrine and serotonin metabolism in the central nervous system in relation to the rhythm of sleep and wakefulness].
    Matussek N; Schuster I; v Mantey S
    Arzneimittelforschung; 1966 Feb; 16(2):259-61. PubMed ID: 5299189
    [No Abstract]   [Full Text] [Related]  

  • 39. Calpains expression during Xenopus laevis development.
    Moudilou EN; Mouterfi N; Exbrayat JM; Brun C
    Tissue Cell; 2010 Oct; 42(5):275-81. PubMed ID: 20828774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The 5HTP decarboxylase and MAO activities and 5HT level in subcellular fractions of the liver during development.
    Bojanek J; Bozkowa K; Kurzepa S
    Biol Neonat; 1965-1966; 9(1):203-14. PubMed ID: 5297081
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.