These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 5317655)

  • 21. Changes in volatile compounds and related biochemical profile during controlled fermentation of cv. Conservolea green olives.
    Panagou EZ; Tassou CC
    Food Microbiol; 2006 Dec; 23(8):738-46. PubMed ID: 16943076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intraspecific genetic diversity of lactic acid bacteria from malolactic fermentation of Cencibel wines as derived from combined analysis of RAPD-PCR and PFGE patterns.
    Ruiz P; Izquierdo PM; Seseña S; Palop ML
    Food Microbiol; 2008 Oct; 25(7):942-8. PubMed ID: 18721686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular characterization of lactic acid populations associated with wine spoilage.
    Beneduce L; Spano G; Vernile A; Tarantino D; Massa S
    J Basic Microbiol; 2004; 44(1):10-6. PubMed ID: 14768022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sugar-glycerol cofermentations by Lactobacillus hilgardii isolated from wine.
    Pasteris SE; Strasser de Saad AM
    J Agric Food Chem; 2009 May; 57(9):3853-8. PubMed ID: 19323470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients.
    Bustos G; Moldes AB; Cruz JM; Domínguez JM
    J Agric Food Chem; 2004 Feb; 52(4):801-8. PubMed ID: 14969534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of hydroxyphenyl-pyranoanthocyanins in Grenache wines: precursor levels and evolution during aging.
    Rentzsch M; Schwarz M; Winterhalter P; Hermosín-Gutiérrez I
    J Agric Food Chem; 2007 Jun; 55(12):4883-8. PubMed ID: 17506569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of Lactobacillus buchneri on the fermentation, aerobic stability and ruminal degradability of maize silage.
    Filya I; Sucu E; Karabulut A
    J Appl Microbiol; 2006 Dec; 101(6):1216-23. PubMed ID: 17105551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential effects of red and white wines on inhibition of the platelet-derived growth factor receptor: impact of the mash fermentation.
    Sparwel J; Vantler M; Caglayan E; Kappert K; Fries JW; Dietrich H; Böhm M; Erdmann E; Rosenkranz S
    Cardiovasc Res; 2009 Mar; 81(4):758-70. PubMed ID: 19074160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin.
    Almeida CM; Vasconcelos MT
    J Agric Food Chem; 2003 Jul; 51(16):4788-98. PubMed ID: 14705914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conversion of biomass hydrolysates and other substrates to ethanol and other chemicals by Lactobacillus buchneri*.
    Liu S; Bischoff KM; Hughes SR; Leathers TD; Price NP; Qureshi N; Rich JO
    Lett Appl Microbiol; 2009 Mar; 48(3):337-42. PubMed ID: 19187511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Screening of lactic acid bacteria from fermented vegetables by carbohydrate profiling and PCR-ELISA.
    Tamminen M; Joutsjoki T; Sjöblom M; Joutsen M; Palva A; Ryhänen EL; Joutsjoki V
    Lett Appl Microbiol; 2004; 39(5):439-44. PubMed ID: 15482435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional expression in Lactobacillus plantarum of xylP encoding the isoprimeverose transporter of Lactobacillus pentosus.
    Chaillou S; Postma PW; Pouwels PH
    J Bacteriol; 1998 Aug; 180(15):4011-4. PubMed ID: 9683504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [A study of 250 strains of heterolactic bacilli isolated from wines].
    Peynaud E; Sapis-Domercq S
    Arch Mikrobiol; 1970; 70(4):348-60. PubMed ID: 4912357
    [No Abstract]   [Full Text] [Related]  

  • 34. Pentose fermentation by Lactobacillus plantarum. V. Fermentation of 2-deoxy-D-ribose.
    DOMAGK GF; HORECKER BL
    J Biol Chem; 1958 Aug; 233(2):283-6. PubMed ID: 13563487
    [No Abstract]   [Full Text] [Related]  

  • 35. Effect of Biofilm Formation by
    Pannella G; Lombardi SJ; Coppola F; Vergalito F; Iorizzo M; Succi M; Tremonte P; Iannini C; Sorrentino E; Coppola R
    Foods; 2020 Jun; 9(6):. PubMed ID: 32560415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of aspartic acid by Lactobacillus arabinosus.
    MACDONALD JC
    Prog Nucl Energy 6 Biol Sci; 1958; 2(3):370-7. PubMed ID: 24546426
    [No Abstract]   [Full Text] [Related]  

  • 37. Draft Genome Sequence of Lactobacillus plantarum XJ25 Isolated from Chinese Red Wine.
    Zhao M; Liu S; He L; Tian Y
    Genome Announc; 2016 Nov; 4(6):. PubMed ID: 27856576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of aspartic acid by Lactobacillus arabinosus.
    MACDONALD JC
    Can J Microbiol; 1958 Aug; 4(4):335-43. PubMed ID: 13561185
    [No Abstract]   [Full Text] [Related]  

  • 39. The enzymic activation of D-alanine in Lactobacillus arabinosus 17-5.
    BADDILEY J; NEUHAUS FC
    Biochim Biophys Acta; 1959 May; 33(1):277-9. PubMed ID: 13651223
    [No Abstract]   [Full Text] [Related]  

  • 40. Flavokinase of Lactobacillus arabinosus 17.5.
    SNOSWELL AM
    Aust J Exp Biol Med Sci; 1957 Oct; 35(5):427-36. PubMed ID: 13499166
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.