These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 5319842)

  • 41. Interactions of transfer RNA from E. coli and methylated bovine serum alumin.
    Goldin H; Kaiser II
    Biochem Biophys Res Commun; 1969 Sep; 36(6):1013-8. PubMed ID: 4899167
    [No Abstract]   [Full Text] [Related]  

  • 42. [Hydrodynamic behaviour of nucleic acid molecules in solutions of varying ionic strength].
    Frisman EV; Shchagina LV; Vorob'ev VI; Shapiro TV
    Biokhimiia; 1966; 31(5):1027-32. PubMed ID: 4878115
    [No Abstract]   [Full Text] [Related]  

  • 43. Effect of transfer RNA on the thermal inactivation of rat liver arginyl-RNA synthetase.
    Ikegami H; Griffin AC
    Biochim Biophys Acta; 1969 Jul; 186(1):217-9. PubMed ID: 4897213
    [No Abstract]   [Full Text] [Related]  

  • 44. Behavior of transfer ribonucleic acids on polyacrylamide gel columns.
    Egan BZ; Rhear RW; Kelmers AD
    Biochim Biophys Acta; 1969 Jan; 174(1):23-31. PubMed ID: 4885695
    [No Abstract]   [Full Text] [Related]  

  • 45. Tertiary structure determinants in transfer RNA. I. Pseudouridine.
    Millar DB
    Biochim Biophys Acta; 1969 Jan; 174(1):32-42. PubMed ID: 4303998
    [No Abstract]   [Full Text] [Related]  

  • 46. Role of sulfhydryl groups in activating enzymes. Properties of Escherichia coli lysine-transfer ribonucleic acid synthetase.
    Stern R; DeLuca M; Mehler AH; McElroy WD
    Biochemistry; 1966 Jan; 5(1):126-30. PubMed ID: 5328550
    [No Abstract]   [Full Text] [Related]  

  • 47. Role of sulfhydryl groups in activatin enzymes. Properties of Escherichia coli lysine-transfer ribonucleic acid synthetase.
    Stern R; DeLuca M; Mehler AH; McElroy WD
    Biochemistry; 1966 Jan; 5(1):126-30. PubMed ID: 5328235
    [No Abstract]   [Full Text] [Related]  

  • 48. The binding of proflavine to transfer ribonucleic acid: dependence on secondary structure.
    Grosjean H; Wérenne J; Chantrenne H
    Biochim Biophys Acta; 1968 Oct; 166(3):616-27. PubMed ID: 4881743
    [No Abstract]   [Full Text] [Related]  

  • 49. A ribonuclease-labile "tail" on the 50S ribosomes from Escherichia coli.
    Hill WE; Rossetti GP; Van Holde KE
    Biochem Biophys Res Commun; 1968 Oct; 33(1):151-5. PubMed ID: 4880244
    [No Abstract]   [Full Text] [Related]  

  • 50. Fractionation of serine transfer ribonucleic acids from Escherichia coli and their coding properties.
    Ishikura H; Nishimura S
    Biochim Biophys Acta; 1968 Jan; 155(1):72-81. PubMed ID: 4869455
    [No Abstract]   [Full Text] [Related]  

  • 51. Investigation of the thermal unfolding of secondary and tertiary structure in E. coli tRNAfMet by high-resolution Nmr.
    Wong KL; Wong YP; Kearns DR
    Biopolymers; 1975 Apr; 14(4):749-62. PubMed ID: 1098699
    [No Abstract]   [Full Text] [Related]  

  • 52. Qbeta replicase-associated, polycytidylic acid-dependent polyguanylic acid polymerase. II. Effect of natural and synthetic polyribonucleotides on the reaction.
    Hori K
    J Biochem; 1973 Aug; 74(2):273-8. PubMed ID: 4586674
    [No Abstract]   [Full Text] [Related]  

  • 53. Studies on the structure of 23-S ribosomal ribonucleic acid from Escherichia coli.
    Midgley JE
    Biochim Biophys Acta; 1965 Nov; 108(3):348-54. PubMed ID: 4286384
    [No Abstract]   [Full Text] [Related]  

  • 54. [Escherichia coli ribosomes. 3. Study of reversible dissociation of 5S RNA by lithium chloride].
    Reynier M; Monier R
    Bull Soc Chim Biol (Paris); 1969 Jan; 50(10):1583-600. PubMed ID: 4895025
    [No Abstract]   [Full Text] [Related]  

  • 55. [Intramolecular addressed alkylation of 2',3'-0-(4-(chloroethyl-methylamino)benzylidene)-tRNA].
    Vlasov VV; Grineva NI; Karpova GG
    Mol Biol; 1974; 8(5):752-61. PubMed ID: 4620015
    [No Abstract]   [Full Text] [Related]  

  • 56. The RNA components in ribonucleoprotein particles occurring during the course of ribosome formation in Escherichia coli.
    Iwabuchi M; Kono M; Oumi T; Osawa S
    Biochim Biophys Acta; 1965 Oct; 108(2):211-9. PubMed ID: 5325237
    [No Abstract]   [Full Text] [Related]  

  • 57. [DNA DENATURATION BY FORMALDEHYDE AT LOW TEMPERATURES].
    VINETSKII IuP
    Biokhimiia; 1964; 29():208-17. PubMed ID: 14207632
    [No Abstract]   [Full Text] [Related]  

  • 58. The effect of mitomycin c on deoxyribonucleic acid and messenger ribonucleic acid in Escherichia coli.
    Smith-Kielland I
    Biochim Biophys Acta; 1966 Feb; 114(2):254-63. PubMed ID: 5329270
    [No Abstract]   [Full Text] [Related]  

  • 59. Characteristic behavior of 4-thiouridine region of individual amino acid-specific Escherichia coli tRNA's upon heat denaturation.
    Seno T; Kobayashi M; Nishimura S
    Biochim Biophys Acta; 1969 Jan; 174(1):71-85. PubMed ID: 4885699
    [No Abstract]   [Full Text] [Related]  

  • 60. On the binding of gelatine to modified serum proteins through formaldehyde in an experimental blood volume expander.
    Pristoupil TI
    Experientia; 1965 Apr; 21(4):194. PubMed ID: 5844174
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.