These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 5321485)

  • 1. Growth stasis by accumulated L-alpha-glycerophosphate in Escherichia coli.
    Cozzarelli NR; Koch JP; Hayashi S; Lin EC
    J Bacteriol; 1965 Nov; 90(5):1325-9. PubMed ID: 5321485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pathogen-specific isotope tracing approach reveals metabolic activities and fluxes of intracellular Salmonella.
    Mitosch K; Beyß M; Phapale P; Drotleff B; Nöh K; Alexandrov T; Patil KR; Typas A
    PLoS Biol; 2023 Aug; 21(8):e3002198. PubMed ID: 37594988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Mechanism and Physiological Role of Glycerol 3-Phosphate in Pseudomonas aeruginosa PAO1.
    Liu Y; Sun W; Ma L; Xu R; Yang C; Xu P; Ma C; Gao C
    mBio; 2022 Dec; 13(6):e0262422. PubMed ID: 36218368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General and condition-specific essential functions of Pseudomonas aeruginosa.
    Lee SA; Gallagher LA; Thongdee M; Staudinger BJ; Lippman S; Singh PK; Manoil C
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5189-94. PubMed ID: 25848053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Escherichia coli peripheral inner membrane proteome.
    Papanastasiou M; Orfanoudaki G; Koukaki M; Kountourakis N; Sardis MF; Aivaliotis M; Karamanou S; Economou A
    Mol Cell Proteomics; 2013 Mar; 12(3):599-610. PubMed ID: 23230279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidic acid synthesis in bacteria.
    Yao J; Rock CO
    Biochim Biophys Acta; 2013 Mar; 1831(3):495-502. PubMed ID: 22981714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy.
    Pethe K; Sequeira PC; Agarwalla S; Rhee K; Kuhen K; Phong WY; Patel V; Beer D; Walker JR; Duraiswamy J; Jiricek J; Keller TH; Chatterjee A; Tan MP; Ujjini M; Rao SP; Camacho L; Bifani P; Mak PA; Ma I; Barnes SW; Chen Z; Plouffe D; Thayalan P; Ng SH; Au M; Lee BH; Tan BH; Ravindran S; Nanjundappa M; Lin X; Goh A; Lakshminarayana SB; Shoen C; Cynamon M; Kreiswirth B; Dartois V; Peters EC; Glynne R; Brenner S; Dick T
    Nat Commun; 2010 Aug; 1(5):57. PubMed ID: 20975714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
    Rittmann D; Lindner SN; Wendisch VF
    Appl Environ Microbiol; 2008 Oct; 74(20):6216-22. PubMed ID: 18757581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-fucose stimulates utilization of D-ribose by Escherichia coli MG1655 DeltafucAO and E. coli Nissle 1917 DeltafucAO mutants in the mouse intestine and in M9 minimal medium.
    Autieri SM; Lins JJ; Leatham MP; Laux DC; Conway T; Cohen PS
    Infect Immun; 2007 Nov; 75(11):5465-75. PubMed ID: 17709419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GlpD and PlsB participate in persister cell formation in Escherichia coli.
    Spoering AL; Vulic M; Lewis K
    J Bacteriol; 2006 Jul; 188(14):5136-44. PubMed ID: 16816185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of a Mutant of Escherichia coli with a Temperature-sensitive Fructose-1,6-Diphosphate Aldolase.
    Böck A; Neidhardt FC
    J Bacteriol; 1966 Aug; 92(2):470-6. PubMed ID: 16562137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization.
    Pavlik P; Simon M; Schuster T; Ruis H
    Curr Genet; 1993; 24(1-2):21-5. PubMed ID: 8358828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pho regulon-dependent Ugp uptake system for glycerol-3-phosphate in Escherichia coli is trans inhibited by Pi.
    Brzoska P; Rimmele M; Brzostek K; Boos W
    J Bacteriol; 1994 Jan; 176(1):15-20. PubMed ID: 8282692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of glycerol 3-phosphate and some of its analogs by the hexose phosphate transport system of Escherichia coli.
    Guth A; Engel R; Tropp BE
    J Bacteriol; 1980 Jul; 143(1):538-9. PubMed ID: 6995450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutants which make more malT product, the activator of the maltose regulon in Escherichia coli.
    Débarbouillé M; Schwartz M
    Mol Gen Genet; 1980; 178(3):589-95. PubMed ID: 6993855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth characteristics of Aspergillus nidulans mutans defective in carbohydrate metabolism.
    Uitzetter JH; Bos CJ; Visser J
    Antonie Van Leeuwenhoek; 1982; 48(3):219-27. PubMed ID: 6751221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactose inhibits the growth of Rhizobium meliloti cells that contain an actively expressed Escherichia coli lactose operon.
    Timblin CR; Kahn ML
    J Bacteriol; 1984 Jun; 158(3):1204-7. PubMed ID: 6427192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of phi(glp-lac) in studies of respiratory regulation of the Escherichia coli anaerobic sn-glycerol-3-phosphate dehydrogenase genes (glpAB).
    Kuritzkes DR; Zhang XY; Lin EC
    J Bacteriol; 1984 Feb; 157(2):591-8. PubMed ID: 6363389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of sn-glycerol 3-phosphorothioate with Escherichia coli: effect on cell growth and metabolism.
    Hammelburger JW; Orr GA
    J Bacteriol; 1983 Nov; 156(2):789-99. PubMed ID: 6355065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive control of the L-rhamnose genetic system in Salmonella typhimurium LT2.
    Al-Zarban S; Heffernan L; Nishitani J; Ransone L; Wilcox G
    J Bacteriol; 1984 May; 158(2):603-8. PubMed ID: 6327613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.