These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 5325140)

  • 21. Crystalline pyruvate oxidase from Escherichia coli. 3. Phospholipid as an allosteric effector for the enzyme.
    Cunningham CC; Hager LP
    J Biol Chem; 1971 Mar; 246(6):1583-9. PubMed ID: 4926543
    [No Abstract]   [Full Text] [Related]  

  • 22. Insensitivity to valine of streptomycin-dependent Escherichia coli K12.
    Polglase WJ
    Mol Pharmacol; 1965 Jul; 1(1):109-12. PubMed ID: 5319648
    [No Abstract]   [Full Text] [Related]  

  • 23. Studies on the nature of the binding of thiamine pyrophosphate to enzymes.
    Morey AV; Juni E
    J Biol Chem; 1968 Jun; 243(11):3009-19. PubMed ID: 4968184
    [No Abstract]   [Full Text] [Related]  

  • 24. Regulation of glutamine synthetase activity in Escherichia coli.
    Stadtman ER; Shapiro BM; Ginsburg A; Kingdon HS; Denton MD
    Brookhaven Symp Biol; 1968 Jun; 21(2):378-96. PubMed ID: 4888136
    [No Abstract]   [Full Text] [Related]  

  • 25. Immunological and chemical studies of phenylalanyl sRNA synthetase from Escherichia coli.
    Fangman WL; Nass G; Neidhardt FC
    J Mol Biol; 1965 Aug; 13(1):202-19. PubMed ID: 4955345
    [No Abstract]   [Full Text] [Related]  

  • 26. The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium.
    Kredich NM; Tomkins GM
    J Biol Chem; 1966 Nov; 241(21):4955-65. PubMed ID: 5332668
    [No Abstract]   [Full Text] [Related]  

  • 27. Thiamine uptake in Escherichia coli. I. General properties of thiamine uptake system in Escherichia coli.
    Kawasaki T; Miyata I; Esaki K; Nose Y
    Arch Biochem Biophys; 1969 Apr; 131(1):223-30. PubMed ID: 4889357
    [No Abstract]   [Full Text] [Related]  

  • 28. Characterization of the proteolytic activation of pyruvate oxidase. Control by specific ligands and by the flavin oxidation-reduction state.
    Russell P; Hager LP; Gennis RB
    J Biol Chem; 1977 Nov; 252(21):7877-82. PubMed ID: 334770
    [No Abstract]   [Full Text] [Related]  

  • 29. Succinyl coenzyme A synthetase from Escherichia coli. I. Purification and properties.
    Gibson J; Upper CD; Gunsalus IC
    J Biol Chem; 1967 May; 242(10):2474-7. PubMed ID: 5338130
    [No Abstract]   [Full Text] [Related]  

  • 30. Suicide inhibition of acetohydroxyacid synthase by hydroxypyruvate.
    Duggleby RG
    J Enzyme Inhib Med Chem; 2005 Feb; 20(1):1-4. PubMed ID: 15895677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of tyrosine analogs in relation to enzyme repression.
    Ravel JM; White MN; Shive W
    Biochem Biophys Res Commun; 1965 Jul; 20(3):352-9. PubMed ID: 5323176
    [No Abstract]   [Full Text] [Related]  

  • 32. Regulation of glutamine synthetase. 8. ATP: glutamine synthetase adenylyltransferase, an enzyme that catalyzes alterations in the regulatory properties of glutamine synthetase.
    Kingdon HS; Shapiro BM; Stadtman ER
    Proc Natl Acad Sci U S A; 1967 Oct; 58(4):1703-10. PubMed ID: 4867671
    [No Abstract]   [Full Text] [Related]  

  • 33. Acyl carrier protein. X. Acyl carrier protein synthetase.
    Elovson J; Vagelos PR
    J Biol Chem; 1968 Jul; 243(13):3603-11. PubMed ID: 4872726
    [No Abstract]   [Full Text] [Related]  

  • 34. Mutants of Pseudomonas aeruginosa strain 1 with unusual acetohydroxy acid synthetase enzymes.
    Loutit JS; Davis PF
    Biochim Biophys Acta; 1970 Oct; 222(1):222-5. PubMed ID: 4990804
    [No Abstract]   [Full Text] [Related]  

  • 35. Iron transport in Escherichia coli and its relation to the repression of 2,3-dihydroxy-N-benzoyl-L-serine synthetase.
    Bryce GF; Brot N
    Arch Biochem Biophys; 1971 Feb; 142(2):399-406. PubMed ID: 4927555
    [No Abstract]   [Full Text] [Related]  

  • 36. Regulation of histidine biosynthetic enzymes in a mutant of Escherichia coli with an altered histidyl-tRNA synthetase.
    Nass G
    Mol Gen Genet; 1967; 100(2):216-24. PubMed ID: 4869993
    [No Abstract]   [Full Text] [Related]  

  • 37. Conformational changes in glutamine synthetase from Escherichia coli. I. The binding of Mn2+ in relation to some aspects of the enzyme structure and activity.
    Denton MD; Ginsburg A
    Biochemistry; 1969 Apr; 8(4):1714-25. PubMed ID: 4896462
    [No Abstract]   [Full Text] [Related]  

  • 38. [Repression and inactivation of glutamine synthetase in Escherichia coli by NH4+].
    Mecke D; Holzer H
    Biochim Biophys Acta; 1966 Aug; 122(2):341-51. PubMed ID: 5338877
    [No Abstract]   [Full Text] [Related]  

  • 39. Formation of methionine methyl groups.
    Jaenicke L; RĂ¼diger H
    Fed Proc; 1971; 30(1):160-6. PubMed ID: 4321981
    [No Abstract]   [Full Text] [Related]  

  • 40. Characterization of a glutamine synthetase inactivating enzyme from Escherichia coli.
    Mecke D; Wulff K; Liess K; Holzer H
    Biochem Biophys Res Commun; 1966 Aug; 24(3):452-8. PubMed ID: 5338440
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.