These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 5326296)

  • 21. On the mechanism of ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Evidence for 3' C--H bond cleavage.
    Stubbe J; Ackles D; Segal R; Blakley RL
    J Biol Chem; 1981 May; 256(10):4843-6. PubMed ID: 7014560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen abstraction from thiols by adenosyl radicals: chemical precedent for thiyl radical formation, the first catalytic step in ribonucleoside triphosphate reductase from Lactobacillus leichmannii.
    Sirovatka JM; Finke RG
    J Inorg Biochem; 2000 Jan; 78(2):149-60. PubMed ID: 10766338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transfer of hydrogen from cobamide coenzyme to water during enzymatic ribonucleotide reduction.
    Beck WS; Abeles RH; Robinson WG
    Biochem Biophys Res Commun; 1966 Nov; 25(4):421-5. PubMed ID: 5966536
    [No Abstract]   [Full Text] [Related]  

  • 24. Pyridine nucleotide oxidizing enzymes of Lactobacillus casei. I. Diaphorase.
    Walker GA; Kilgour GL
    Arch Biochem Biophys; 1965 Sep; 111(3):529-33. PubMed ID: 4285875
    [No Abstract]   [Full Text] [Related]  

  • 25. Electron paramagnetic resonance studies on cobalamin-dependent ribonucleotide reduction.
    Hamilton JA; Tamao Y; Blakley RL; Coffman RE
    Biochemistry; 1972 Dec; 11(25):4696-705. PubMed ID: 4347698
    [No Abstract]   [Full Text] [Related]  

  • 26. [Deoxynucleotide metabolism and its reuulatory mechanism].
    Kobayashi S
    Tanpakushitsu Kakusan Koso; 1970 Dec; 15(14):1419-31. PubMed ID: 4922934
    [No Abstract]   [Full Text] [Related]  

  • 27. The synthesis of a 5'-deoxyadenosylcobalamin-agarose adsorbent and its utility in the purification of ribonucleotide reductase.
    Yamada RH; Hogenkamp HP
    J Biol Chem; 1972 Oct; 247(19):6266-70. PubMed ID: 4651647
    [No Abstract]   [Full Text] [Related]  

  • 28. Inactivation of the Lactobacillus leichmannii ribonucleoside triphosphate reductase by 2'-chloro-2'-deoxyuridine 5'-triphosphate: stoichiometry of inactivation, site of inactivation, and mechanism of the protein chromophore formation.
    Ashley GW; Harris G; Stubbe J
    Biochemistry; 1988 Jun; 27(12):4305-10. PubMed ID: 3048383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ribonucleoside triphosphate reductase from Lactobacillus leichmannii.
    Blakley RL
    Methods Enzymol; 1978; 51():246-59. PubMed ID: 692388
    [No Abstract]   [Full Text] [Related]  

  • 30. DEOXYCYTIDYLATE FORMATION FROM CYTIDYLATE WITHOUT GLYCOSIDIC CLEAVAGE IN LACTOBACILLUS LEICHMANNII EXTRACTS CONTAINING VITAMIN B12 COENZYME.
    ABRAMS R; DURAISWAMI S
    Biochem Biophys Res Commun; 1965 Feb; 18():409-14. PubMed ID: 14300757
    [No Abstract]   [Full Text] [Related]  

  • 31. Stereospecificity of deoxycytidine triphosphate synthesis with the ribonucleotide reductase of Lactobacillus leichmanii.
    Griffin CE; Hamilton FD; Hopper SP; Abrams R
    Arch Biochem Biophys; 1968 Sep; 126(3):905-11. PubMed ID: 5686602
    [No Abstract]   [Full Text] [Related]  

  • 32. [Sulfhydryl groups and morpogenesis. I. The effects of Beta-mercaptoethanol, alpha-lipoic acid, adenosine triphosphoric acid and oxaloacetate on the embryonic development of batrachians].
    BRACHET J
    Dev Biol; 1963 Mar; 6():348-64. PubMed ID: 14014788
    [No Abstract]   [Full Text] [Related]  

  • 33. Adenosylcobalamin-dependent ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Rapid, improved purification involving dGTP-based affinity chromatography plus biophysical characterization studies demonstrating enhanced, "crystallographic level" purity.
    Suto RK; Whalen MA; Finke RG
    Prep Biochem Biotechnol; 1999 Aug; 29(3):273-309. PubMed ID: 10431931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleoside antibiotics. I. Biochemical tools for studying the structural requirements for interaction at the catalytic and regulatory sites of ribonucleotide reductase from Lactobacillus leichmannii.
    Suhadolnik RJ; Finkel SI; Chassy BM
    J Biol Chem; 1968 Jun; 243(12):3552-7. PubMed ID: 5656392
    [No Abstract]   [Full Text] [Related]  

  • 35. B12-dependent synthesis of deoxyribonucleotides.
    Blakley RL
    Fed Proc; 1966; 25(6):1633-8. PubMed ID: 5927396
    [No Abstract]   [Full Text] [Related]  

  • 36. Thiol coenzymes of methanogens.
    Noll KM
    Methods Enzymol; 1995; 251():470-82. PubMed ID: 7651230
    [No Abstract]   [Full Text] [Related]  

  • 37. The sulfhydryl groups of citrate cleavage enzyme.
    Cottam GL; Srere PA
    Arch Biochem Biophys; 1969 Mar; 130(1):304-11. PubMed ID: 4888278
    [No Abstract]   [Full Text] [Related]  

  • 38. The enzymic activity of the outer shell of Lactobacillus arabinosus.
    Cole HA; Hughes DE
    J Gen Microbiol; 1965 Jul; 40(1):81-95. PubMed ID: 4221705
    [No Abstract]   [Full Text] [Related]  

  • 39. Cloning, sequencing, and expression of the adenosylcobalamin-dependent ribonucleotide reductase from Lactobacillus leichmannii.
    Booker S; Stubbe J
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8352-6. PubMed ID: 8397403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Coenzymes (vitamins)].
    Leclerc M
    Aliment Vie; 1970; 58(1):17-32. PubMed ID: 4393353
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.