These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 5327914)

  • 21. Optimal spore germination in Clostridium botulinum ATCC 3502 requires the presence of functional copies of SleB and YpeB, but not CwlJ.
    Meaney CA; Cartman ST; McClure PJ; Minton NP
    Anaerobe; 2015 Aug; 34():86-93. PubMed ID: 25937262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apertures in the Clostridium sporogenes spore coat and exosporium align to facilitate emergence of the vegetative cell.
    Brunt J; Cross KL; Peck MW
    Food Microbiol; 2015 Oct; 51():45-50. PubMed ID: 26187826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PHYSIOLOGY OF THE SPORULATION PROCESS IN CLOSTRIDIUM BOTULINUM. II. MATURATION OF FORESPORES.
    DAY LE; COSTILOW RN
    J Bacteriol; 1964 Sep; 88(3):695-701. PubMed ID: 14208509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance.
    Wachnicka E; Stringer SC; Barker GC; Peck MW
    Appl Environ Microbiol; 2016 Oct; 82(19):6019-29. PubMed ID: 27474721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Further electron microscope characterization of spore appendages of Clostridium bifermentans.
    Yolton DP; Pope L; Williams MG; Rode LJ
    J Bacteriol; 1968 Jan; 95(1):231-8. PubMed ID: 5636820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Characteristics of spore formation in Clostridium botulinum type C].
    Shakhbanov AA
    Zh Mikrobiol Epidemiol Immunobiol; 1978 Apr; (4):116-9. PubMed ID: 358687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Persistence and mobility of a Clostridium botulinum spore population introduced to soil with spiked compost.
    Gessler F; Böhnel H
    FEMS Microbiol Ecol; 2006 Dec; 58(3):384-93. PubMed ID: 17117983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Appendage development in Clostridium bifermentans.
    Samsonoff WA; Hashimoto T; Conti SF
    J Bacteriol; 1971 Apr; 106(1):269-75. PubMed ID: 4101518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of sodium chloride and pH on the outgrowth of spores of type E Clostridium botulinum at optimal and suboptimal temperatures.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1966 Jan; 14(1):49-54. PubMed ID: 5330680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. POUCH METHOD FOR THE ISOLATION AND ENUMERATION OF CLOSTRIDIA.
    BLADEL BO; GREENBERG RA
    Appl Microbiol; 1965 Mar; 13(2):281-5. PubMed ID: 14325895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of sorbate inhibition of Bacillus cereus T and Clostridium botulinum 62A spore germination.
    Smoot LA; Pierson MD
    Appl Environ Microbiol; 1981 Sep; 42(3):477-83. PubMed ID: 6794451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clostridium difficile exosporium cysteine-rich proteins are essential for the morphogenesis of the exosporium layer, spore resistance, and affect C. difficile pathogenesis.
    Calderón-Romero P; Castro-Córdova P; Reyes-Ramírez R; Milano-Céspedes M; Guerrero-Araya E; Pizarro-Guajardo M; Olguín-Araneda V; Gil F; Paredes-Sabja D
    PLoS Pathog; 2018 Aug; 14(8):e1007199. PubMed ID: 30089172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a combined selection and enrichment PCR procedure for Clostridium botulinum Types B, E, and F and its use to determine prevalence in fecal samples from slaughtered pigs.
    Dahlenborg M; Borch E; Rådström P
    Appl Environ Microbiol; 2001 Oct; 67(10):4781-8. PubMed ID: 11571185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo and in vitro release of Ca 45 from spores of clostridium botulinum type A as further evidence for spore germination.
    Suzuki JB; Booth R; Grecz N
    Res Commun Chem Pathol Pharmacol; 1971 Jan; 2(1):16-23. PubMed ID: 4948430
    [No Abstract]   [Full Text] [Related]  

  • 35. Isolation and partial characterization of exosporium from spores of a highly sporogenic mutant of Clostridium botulinum type A.
    Takumi K; Kinouchi T; Kawata T
    Microbiol Immunol; 1979; 23(6):443-54. PubMed ID: 386051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxin production in Clostridium botulinum as demonstrated by electron microscopy.
    Duda JJ; Slack JM
    J Bacteriol; 1969 Feb; 97(2):900-4. PubMed ID: 4886298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological studies on spore germination, with special reference to Clostridium botulinum; carbon dioxide and germination, with a note on carbon dioxide and aerobic spores.
    WYNNE ES; FOSTER JW
    J Bacteriol; 1948 Mar; 55(3):331-9. PubMed ID: 18902255
    [No Abstract]   [Full Text] [Related]  

  • 38. KINETICS OF DRY RUPTURE OF BACTERIAL SPORES IN THE PRESENCE OF SALT.
    SACKS LE; PERCELL PB; THOMAS RS; BAILEY GF
    J Bacteriol; 1964 Apr; 87(4):952-60. PubMed ID: 14137636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High prevalence of Clostridium botulinum types A and B in honey samples detected by polymerase chain reaction.
    Nevas M; Hielm S; Lindström M; Horn H; Koivulehto K; Korkeala H
    Int J Food Microbiol; 2002 Jan; 72(1-2):45-52. PubMed ID: 11843412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fermentative activities of control and radiation-"killed" spores of Clostridium botulinum.
    COSTILOW RN
    J Bacteriol; 1962 Dec; 84(6):1268-73. PubMed ID: 14023323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.