These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 5330109)

  • 1. The secondary structure of ribosomal ribonucleic acid in solution.
    Cox RA
    Biochem J; 1966 Mar; 98(3):841-57. PubMed ID: 5330109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spectrophotometric study of the secondary structure of ribonucleic acid isolated from the smaller and larger ribosomal subparticles of rabbit reticulocytes.
    Cox RA
    Biochem J; 1970 Mar; 117(1):101-18. PubMed ID: 4911953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A possible method for characterizing the secondary structure of ribonucleic acids.
    Cox RA
    Biochem J; 1966 Jul; 100(1):146-68. PubMed ID: 5338275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal denaturation in acidic solutions of double-helical ribonucleic acid from virus-like particles found in Penicillium chrysogenum. A spectrophotometric study.
    Cox RA; Kanagalingam K; Sutherland E
    Biochem J; 1971 Nov; 125(2):655-65. PubMed ID: 5004201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of the hydrolysis of unfractionated reticulocyte ribosomal ribonucleic acid by pancreatic ribonuclease and its relevance to secondary structure.
    Cox RA; Kanagalingam K
    Biochem J; 1967 May; 103(2):431-52. PubMed ID: 4962083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of the alkaline hydrolysis of fractionated reticulocyte ribosomal ribonucleic acid and its relevance to secondary structure.
    Cox RA; Gould HJ; Kanagalingam K
    Biochem J; 1968 Feb; 106(3):733-41. PubMed ID: 5639928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spectrophotometric study of the secondary structure of ribonucleic acid based on a method for diminishing single-stranded base-'stacking' without affecting multi-helical structures.
    Cox RA; Kanagalingam K
    Biochem J; 1967 Jun; 103(3):749-58. PubMed ID: 4860544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of the thermal stability of ribosomes and biologically active subribosomal particles.
    Cox RA; Pratt H; Huvos P; Higginson B; Hirst W
    Biochem J; 1973 Jul; 134(3):775-93. PubMed ID: 4584137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on ribosomal RNA structure. II. Secondary structures in solution of rRNA and crystallizable fragments.
    Thomas GJ; Spencer M
    Biochim Biophys Acta; 1969 Apr; 179(2):360-8. PubMed ID: 5771887
    [No Abstract]   [Full Text] [Related]  

  • 10. A study of ribosomes and of ribonucleic acid from a thermorphilic organism.
    Mangiantini MT; Tecce G; Toschi G; Trentalance A
    Biochim Biophys Acta; 1965 Jun; 103(2):252-74. PubMed ID: 5319744
    [No Abstract]   [Full Text] [Related]  

  • 11. Biophysical properties of RNA from turnip yellow mosaic virus.
    Mitra S; Kaesberg P
    J Mol Biol; 1965 Dec; 14(2):558-71. PubMed ID: 4956460
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies on the secondary structure of ribosomal ribonucleic acid components of rabbit reticulocytes.
    Gould HJ; Simpkins H
    Biopolymers; 1969; 7(2):223-39. PubMed ID: 5785239
    [No Abstract]   [Full Text] [Related]  

  • 13. A study of the influence of magnesium ions on the conformation of ribosomal ribonucleic acid and on the stability of the larger subribosomal particle of rabbit reticulocytes.
    Cox RA; Hirst W
    Biochem J; 1976 Dec; 160(3):505-19. PubMed ID: 797388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and physical properties of the ribosomal ribonucleic acid of Escherichia coli.
    Stanley WM; Bock RM
    Biochemistry; 1965 Jul; 4(7):1302-11. PubMed ID: 5323136
    [No Abstract]   [Full Text] [Related]  

  • 15. The secondary structure of E. coli ribosomes and ribosomal RNA's: a spectrophotometric approach.
    Araco A; Belli M; Giorgi C; Onori G
    Nucleic Acids Res; 1975 Mar; 2(3):373-81. PubMed ID: 1093140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the interaction of p-chloromercuribenzoate with turnip yellow mosaic virus. 3. Involvement of the ribonucleic acid.
    Kaper JM; Jenifer FG
    Arch Biochem Biophys; 1965 Nov; 112(2):331-9. PubMed ID: 5880968
    [No Abstract]   [Full Text] [Related]  

  • 17. Optical investigations on double stranded ribonucleic acid from turnip yellow mosaic virus.
    Guschlbauer W; Courtois Y; Bové C; Bové JM
    Mol Gen Genet; 1968; 103(2):150-8. PubMed ID: 5713395
    [No Abstract]   [Full Text] [Related]  

  • 18. Length requirements for tRNA-specific enzymes and cleavage specificity at the 3' end of turnip yellow mosaic virus RNA.
    Joshi S; Chapeville F; Haenni AL
    Nucleic Acids Res; 1982 Mar; 10(6):1947-62. PubMed ID: 6176943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the structure of 23-S ribosomal ribonucleic acid from Escherichia coli.
    Midgley JE
    Biochim Biophys Acta; 1965 Nov; 108(3):348-54. PubMed ID: 4286384
    [No Abstract]   [Full Text] [Related]  

  • 20. A search for O-polypeptidyl-ribonucleic acids in rabbit-reticulocyte ribosomes by electrophoresis in phenol-acetic acid-water systems.
    Brattsten I; Synge RL; Watt WB
    Biochem J; 1965 Dec; 97(3):678-88. PubMed ID: 5881657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.