These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 5330220)

  • 1. Biological activity of the re-assembled ribosome-like particles.
    Spirin AS; Belitsina NV
    J Mol Biol; 1966 Jan; 15(1):282-3. PubMed ID: 5330220
    [No Abstract]   [Full Text] [Related]  

  • 2. [14C]erythromycin-ribosome complex formation and non-enzymatic binding of aminoacyl-transfer RNA to ribosome-messenger RNA complex.
    Tanaka K; Teraoka H; Nagira T; Tamaki M
    Biochim Biophys Acta; 1966 Aug; 123(2):435-7. PubMed ID: 4961166
    [No Abstract]   [Full Text] [Related]  

  • 3. The formation and stabilization of 30S and 50S ribosome couples in Escherichia coli.
    Schlessinger D; Mangiarotti G; Apirion D
    Proc Natl Acad Sci U S A; 1967 Oct; 58(4):1782-9. PubMed ID: 4867673
    [No Abstract]   [Full Text] [Related]  

  • 4. Helix formation between polyribonucleotides and purine nucleosides. 3. The effects of purine nucleosides in cell-free amino acid-incorporating systems.
    Maxwell ES; Barnett LM; Howard FB; Miles HT
    J Mol Biol; 1966 Apr; 16(2):440-53. PubMed ID: 5334034
    [No Abstract]   [Full Text] [Related]  

  • 5. Peptide bond formation on the ribosome. Structural requirements for inhibition of protein synthesis and of release of peptides from peptidyl-tRNA on bacterial and mammalian ribosomes by aminoacyl and nucleotidyl analogues of puromycin.
    Harris RJ; Hanlon JE; Symons RH
    Biochim Biophys Acta; 1971 Jun; 240(2):244-62. PubMed ID: 4934602
    [No Abstract]   [Full Text] [Related]  

  • 6. Physiochemical characterization of ribosome-like (55-S) particles from rat liver mitochondria.
    Sacchi A; Cerbone F; Cammarano P; Ferrini U
    Biochim Biophys Acta; 1973 May; 308(3):390-403. PubMed ID: 4575966
    [No Abstract]   [Full Text] [Related]  

  • 7. Reactivation in vitro of inactive ribosomes from stationary phase Escherichia coli.
    Scheps R; Wax R; Revel M
    Biochim Biophys Acta; 1971 Feb; 232(1):140-50. PubMed ID: 4930201
    [No Abstract]   [Full Text] [Related]  

  • 8. Stimulation of protein synthesis by isolated RNA-protein particles.
    Mandel P; Kempf J
    Life Sci; 1969 Feb; 8(4):165-72. PubMed ID: 5777628
    [No Abstract]   [Full Text] [Related]  

  • 9. Stimulation of phenylalanine incorporation in hepatic polyribosome preparations by polyuridylic acid.
    Bloemendal H; Bont WS; Meisner I
    Nature; 1966 Mar; 209(5029):1204-6. PubMed ID: 5334105
    [No Abstract]   [Full Text] [Related]  

  • 10. The role of ribosomal conformation in protein synthesis: conformational changes in the ribosome during the tranlocation step.
    Chuang DM; Silberstein HA; Simpson MV
    Arch Biochem Biophys; 1971 Jun; 144(2):778-80. PubMed ID: 4936516
    [No Abstract]   [Full Text] [Related]  

  • 11. Ribosome structure and function emergent.
    Kurland CG
    Science; 1970 Sep; 169(3951):1171-7. PubMed ID: 4915895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A protein factor stimulating binding and translating of polyuridylic acid by Escherichia coli ribosomes.
    Smolarsky M; Tal M
    Biochim Biophys Acta; 1970 Aug; 213(2):401-16. PubMed ID: 4927490
    [No Abstract]   [Full Text] [Related]  

  • 13. Translocation in ribosomes by attachment-detachment of elongation factor G without GTP cleavage: evidence from a column-bound ribosome system.
    Belitsina NV; Glukhova MA; Spirin AS
    FEBS Lett; 1975 Jun; 54(1):35-8. PubMed ID: 1093876
    [No Abstract]   [Full Text] [Related]  

  • 14. The effect of high salt concentration on fidelity of translation by Escherichia coli ribosomes.
    Chomczyński P; Szafrański P
    Acta Biochim Pol; 1971; 18(2):163-70. PubMed ID: 4939214
    [No Abstract]   [Full Text] [Related]  

  • 15. Purification and properties of ribosome-releasing factor.
    Hirashima A; Kaji A
    Biochemistry; 1972 Oct; 11(22):4037-44. PubMed ID: 4563926
    [No Abstract]   [Full Text] [Related]  

  • 16. Ribosomes from Xenopus laevis ovaries and the polyuridylic acid-directed biosynthesis of polyphenylalanine.
    Cox RA; Ford PJ; Pratt H
    Biochem J; 1970 Sep; 119(2):161-4. PubMed ID: 5488911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function of three protein factors and ribosomal subunits in the initiation of protein synthesis in E. coli.
    Revel M; Lelong JC; Brawerman G; Gros F
    Nature; 1968 Sep; 219(5158):1016-21. PubMed ID: 4876939
    [No Abstract]   [Full Text] [Related]  

  • 18. The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis.
    Haenni AL; Chapeville F
    Biochim Biophys Acta; 1966 Jan; 114(1):135-48. PubMed ID: 5327840
    [No Abstract]   [Full Text] [Related]  

  • 19. Photoaffinity labelling of 23 S RNA at the donor-site of the Escherichia coli ribosome.
    Barta A; Kuechler E; Branlant C; Sri Widada J; Krol A; Ebel JP
    FEBS Lett; 1975 Aug; 56(1):170-4. PubMed ID: 1098927
    [No Abstract]   [Full Text] [Related]  

  • 20. Inactivation of Escherichia coli ribosomes by ultraviolet irradiation. I. Activity of poly U-directed polyphenylalanine synthesis.
    Kagawa H; Fukutome H; Kawade Y
    J Mol Biol; 1967 Jun; 26(2):249-65. PubMed ID: 5340612
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.