These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 5330662)

  • 21. [The metabolism of damaged tissue. XIV. Glucose, fructose and glucose-6-phosphate in the liver and mucles of normal and alloxan diabetic mice after glucose, fructose and glucose 6-phosphate loading].
    THIELMANN K; BLUME E; KRAUL M; FRUNDER H
    Hoppe Seylers Z Physiol Chem; 1960 Dec; 322():241-53. PubMed ID: 13776325
    [No Abstract]   [Full Text] [Related]  

  • 22. Location of the gene specifying hexose phosphate transport (uhp) on the chromosome of Escherichia coli.
    Essenberg RC; Kornberg HL
    J Gen Microbiol; 1977 Mar; 99(1):157-69. PubMed ID: 325177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localization of phosphoglucose isomerase in Escherichia coli and its relation to the induction of the hexose phosphate transport system.
    Friedberg I
    J Bacteriol; 1972 Dec; 112(3):1201-5. PubMed ID: 4344919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic control of hexose phosphate uptake by Escherichia coli.
    Kornberg HL; Smith J
    Nature; 1969 Dec; 224(5226):1261-2. PubMed ID: 4902320
    [No Abstract]   [Full Text] [Related]  

  • 25. Measurement of the activity of the hexose monophosphate pathway of glucose metabolism with the use of [18O]glucose. Variations in its activity in Escherichia coli with growth conditions.
    Model P; Rittenberg D
    Biochemistry; 1967 Jan; 6(1):69-80. PubMed ID: 4382154
    [No Abstract]   [Full Text] [Related]  

  • 26. Cyclic AMP regulation of the hexose phosphate transport system in Escherichia coli.
    Ezzell JW; Dobrogosz WJ
    J Bacteriol; 1978 Feb; 133(2):1047-9. PubMed ID: 203569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distribution of an inducible hexose-phosphate transport system among various bacteria.
    Winkler HH
    J Bacteriol; 1973 Nov; 116(2):1079-81. PubMed ID: 4583235
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Steady-state concentrations of glucose-6-phosphate, 6-phosphogluconate, and reduced nicotinamide adenine dinucleotide phosphate in strains of Escherichia coli sensitive and resistant to catabolite repression.
    Hsie AW; Rickenberg HV; Schulz DW; Kirsch WM
    J Bacteriol; 1969 Jun; 98(3):1407-8. PubMed ID: 4389233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport.
    Simoni RD; Levinthal M; Kundig FD; Kundig W; Anderson B; Hartman PE; Roseman S
    Proc Natl Acad Sci U S A; 1967 Nov; 58(5):1963-70. PubMed ID: 4866983
    [No Abstract]   [Full Text] [Related]  

  • 30. [Glucose and gluconate metabolism in glycolysis and hexosemonophosphate pathway mutants from Escherichia coli].
    Schreyer R; Böck A
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1567. PubMed ID: 4568006
    [No Abstract]   [Full Text] [Related]  

  • 31. Induction of an active transport system for glucose 6-phosphate in Escherichia coli.
    Pogell BM; Maity BR; Frumkin S; Shapiro S
    Arch Biochem Biophys; 1966 Sep; 116(1):406-15. PubMed ID: 5336025
    [No Abstract]   [Full Text] [Related]  

  • 32. Anti-insulin action of cortisol. 2. Comparison of the influence of cortisol on the metabolism of glucose, fructose, mannose and galactose.
    Plager JE; Matsui N; Ariyoshi Y
    Endocrinology; 1969 Jun; 84(6):1450-5. PubMed ID: 5781128
    [No Abstract]   [Full Text] [Related]  

  • 33. [Studies of carbohydrate metabolism with hydrogen-labelling, V. Measurement of T-fixation in ethanol following yeast fermentation in H2O-HOT or with different T-labelled sugars].
    Simon H; Medina R
    Z Naturforsch B; 1968 Mar; 23(3):326-9. PubMed ID: 4385716
    [No Abstract]   [Full Text] [Related]  

  • 34. [The influence of 2,4-dinitrophenol on the cell-free degradation of hexose].
    Axt J
    Acta Biol Med Ger; 1965; 14(5):476-81. PubMed ID: 5834898
    [No Abstract]   [Full Text] [Related]  

  • 35. Glucose transport in Escherichia coli.
    Erni B
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):13-23. PubMed ID: 2699244
    [No Abstract]   [Full Text] [Related]  

  • 36. Control of the sequential utilization of glucose and fructose by Escherichia coli.
    Clark B; Holms WH
    J Gen Microbiol; 1976 Aug; 96(2):191-201. PubMed ID: 182905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mutant beta-D-glucoside transport system of Escherichia coli resistant to catabolite inhibition.
    Elvin CM; Kornberg HL
    FEBS Lett; 1982 Oct; 147(2):137-42. PubMed ID: 6756954
    [No Abstract]   [Full Text] [Related]  

  • 38. A tentative mechanism for the anaerobic transport of glucose, fructose and mannose in yeast.
    SCHARFF TG; KREMER EH
    Arch Biochem Biophys; 1962 Apr; 97():192-8. PubMed ID: 14498055
    [No Abstract]   [Full Text] [Related]  

  • 39. Phosphoglucoisomerase-catalyzed interconversion of hexose phosphates; comparison with phosphomannoisomerase.
    Malaisse-Lagae F; Liemans V; Yaylali B; Sener A; Malaisse WJ
    Biochim Biophys Acta; 1989 Oct; 998(2):118-25. PubMed ID: 2790058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport of sugars and amino acids in bacteria. V. Further studies in the galactose transport system in Escherichia coli.
    Anraku Y
    J Biochem; 1971 Nov; 70(5):855-6. PubMed ID: 4947361
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.