These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 5330680)
1. Effect of sodium chloride and pH on the outgrowth of spores of type E Clostridium botulinum at optimal and suboptimal temperatures. Segner WP; Schmidt CF; Boltz JK Appl Microbiol; 1966 Jan; 14(1):49-54. PubMed ID: 5330680 [TBL] [Abstract][Full Text] [Related]
2. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C. Segner WP; Schmidt CF; Boltz JK Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801 [TBL] [Abstract][Full Text] [Related]
3. Effect of acid and salt concentration in fresh-pack pickles on the growth of Clostridium botulinum spores. Ito KA; Chen JK; Lerke PA; Seeger ML; Unverferth JA Appl Environ Microbiol; 1976 Jul; 32(1):121-4. PubMed ID: 9898 [TBL] [Abstract][Full Text] [Related]
4. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature. Graham AF; Mason DR; Peck MW Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606 [TBL] [Abstract][Full Text] [Related]
5. Quantitation of pH- and salt-tolerant subpopulations from Clostridium botulinum. Montville TJ Appl Environ Microbiol; 1984 Jan; 47(1):28-30. PubMed ID: 6364971 [TBL] [Abstract][Full Text] [Related]
6. Combined effect of water activity, pH and temperature on the growth of Clostridium botulinum from spore and vegetative cell inocula. Baird-Parker AC; Freame B J Appl Bacteriol; 1967 Dec; 30(3):420-9. PubMed ID: 4865469 [No Abstract] [Full Text] [Related]
7. Heat resistance of spores of marine and terrestrial strains of Clostridium botulinum type C. Segner WP; Schmidt CF Appl Microbiol; 1971 Dec; 22(6):1030-3. PubMed ID: 4944802 [TBL] [Abstract][Full Text] [Related]
8. Factors influencing Clostridium botulinum spore germination, outgrowth, and toxin formation in acidified media. Wong DM; Young-Perkins KE; Merson RL Appl Environ Microbiol; 1988 Jun; 54(6):1446-50. PubMed ID: 3046489 [TBL] [Abstract][Full Text] [Related]
9. Effect of reducing agents on oxidation-reduction potential and the outgrowth of Clostridium botulinum type E spores. Smith MV; Pierson MD Appl Environ Microbiol; 1979 May; 37(5):978-84. PubMed ID: 384903 [TBL] [Abstract][Full Text] [Related]
10. Survival and outgrowth of Clostridium botulinum type E spores in smoked fish. Christiansen LN; Deffner J; Foster EM; Sugiyama H Appl Microbiol; 1968 Jan; 16(1):133-7. PubMed ID: 4865899 [TBL] [Abstract][Full Text] [Related]
12. The combined effect of sub-optimal temperature and sub-optimal pH on growth and toxin formation from spores of Clostridium botulinum. Graham AF; Lund BM J Appl Bacteriol; 1987 Nov; 63(5):387-93. PubMed ID: 3326865 [TBL] [Abstract][Full Text] [Related]
13. Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum. Graham AF; Mason DR; Peck MW Int J Food Microbiol; 1996 Aug; 31(1-3):69-85. PubMed ID: 8880298 [TBL] [Abstract][Full Text] [Related]
15. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature. Graham AF; Mason DR; Maxwell FJ; Peck MW Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311 [TBL] [Abstract][Full Text] [Related]
16. Effect of water activity and pH on growth and toxin production by Clostridium botulinum type G. Briozzo J; de Lagarde EA; Chirife J; Parada JL Appl Environ Microbiol; 1986 Apr; 51(4):844-8. PubMed ID: 3518631 [TBL] [Abstract][Full Text] [Related]
17. Modeling the germination kinetics of clostridium botulinum 56A spores as affected by temperature, pH, and sodium chloride. Chea FP; Chen Y; Montville TJ; Schaffner DW J Food Prot; 2000 Aug; 63(8):1071-9. PubMed ID: 10945583 [TBL] [Abstract][Full Text] [Related]
18. Contrasting effects of heat treatment and incubation temperature on germination and outgrowth of individual spores of nonproteolytic Clostridium botulinum bacteria. Stringer SC; Webb MD; Peck MW Appl Environ Microbiol; 2009 May; 75(9):2712-9. PubMed ID: 19270146 [TBL] [Abstract][Full Text] [Related]
19. Historical and contemporary NaCl concentrations affect the duration and distribution of lag times from individual spores of nonproteolytic clostridium botulinum. Webb MD; Pin C; Peck MW; Stringer SC Appl Environ Microbiol; 2007 Apr; 73(7):2118-27. PubMed ID: 17277206 [TBL] [Abstract][Full Text] [Related]
20. Time-to-turbidity model for non-protective type B Clostridium botulinum. Whiting RC; Oriente JC Int J Food Microbiol; 1997 Apr; 36(1):49-60. PubMed ID: 9168314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]