These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 533275)

  • 1. Role of plasmids in mercury transformation by bacteria isolated from the aquatic environment.
    Olson BH; Barkay T; Colwell RR
    Appl Environ Microbiol; 1979 Sep; 38(3):478-85. PubMed ID: 533275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental significance of the potential for mer(Tn21)-mediated reduction of Hg2+ to Hg0 in natural waters.
    Barkay T; Liebert C; Gillman M
    Appl Environ Microbiol; 1989 May; 55(5):1196-202. PubMed ID: 2547336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency of antibiotic and heavy metal resistance, pigmentation, and plasmids in bacteria of the marine air-water interface.
    Hermansson M; Jones GW; Kjelleberg S
    Appl Environ Microbiol; 1987 Oct; 53(10):2338-42. PubMed ID: 3426213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury and organomercurial resistances determined by plasmids in Pseudomonas.
    Clark DL; Weiss AA; Silver S
    J Bacteriol; 1977 Oct; 132(1):186-96. PubMed ID: 410779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury volatilization by R factor systems in Escherichia coli isolated from aquatic environments of India.
    Gupta N; Ali A
    Curr Microbiol; 2004 Feb; 48(2):88-96. PubMed ID: 15057474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).
    Figueiredo NL; Canário J; O'Driscoll NJ; Duarte A; Carvalho C
    Ecotoxicol Environ Saf; 2016 Feb; 124():60-67. PubMed ID: 26461264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of methylmercury by bacteria isolated from environmental samples.
    Spangler WJ; Spigarelli JL; Rose JM; Flippin RS; Miller HH
    Appl Microbiol; 1973 Apr; 25(4):488-93. PubMed ID: 4572979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatilization of mercuric chloride by mercury-resistant plasmid-bearing strains of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.
    Summers AO; Lewis E
    J Bacteriol; 1973 Feb; 113(2):1070-2. PubMed ID: 4632313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survey of resistance to metals and volatilization activity of Hg-resistant R plasmids in Citrobacter isolated from clinical lesions in Japan.
    Nakahara H; Asakawa M; Yonekura I; Sato A; Ohshima K; Kitamura M; Kozukue H
    Zentralbl Bakteriol Mikrobiol Hyg A; 1984 Aug; 257(3):400-8. PubMed ID: 6485637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organomercurial-volatilizing bacteria in the mercury-polluted sediment of Minamata Bay, Japan.
    Nakamura K; Sakamoto M; Uchiyama H; Yagi O
    Appl Environ Microbiol; 1990 Jan; 56(1):304-5. PubMed ID: 2310185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury and organomercurial resistances determined by plasmids in Staphylococcus aureus.
    Weiss AA; Murphy SD; Silver S
    J Bacteriol; 1977 Oct; 132(1):197-208. PubMed ID: 914774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-transmissible mercury resistance plasmids with gene-mobilizing capacity in soil bacterial populations: influence of wheat roots and mercury addition.
    Smit E; Wolters A; van Elsas JD
    Appl Environ Microbiol; 1998 Apr; 64(4):1210-9. PubMed ID: 9546155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction.
    Zhang W; Chen L; Liu D
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1305-14. PubMed ID: 21751007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury-resistant bacteria and petroleum degradation.
    Walker JD; Colwell RR
    Appl Microbiol; 1974 Jan; 27(1):285-7. PubMed ID: 4809908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercuric reductase activity in the adaptation to cationic mercury, phenyl mercuric acetate and multiple antibiotics of a gram-negative population isolated from an aerobic fixed-bed reactor.
    Henriette C; Petitdemange E; Raval G; Gay R
    J Appl Bacteriol; 1991 Nov; 71(5):439-44. PubMed ID: 1761438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of antibiotic and metal resistance and plasmids in Bacillus strains isolated from marine sediment.
    Belliveau BH; Starodub ME; Trevors JT
    Can J Microbiol; 1991 Jul; 37(7):513-20. PubMed ID: 1913356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of mercuric chloride and methylmercury by the rumen microflora.
    Kozak S; Forsberg CW
    Appl Environ Microbiol; 1979 Oct; 38(4):626-36. PubMed ID: 539820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmid mediated metal and antibiotic resistance in marine Pseudomonas.
    Rajini Rani DB; Mahadevan A
    Biometals; 1992; 5(2):73-80. PubMed ID: 1356041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of aquatic microbial communities to pollutant stress.
    Barkay T; Pritchard H
    Microbiol Sci; 1988 Jun; 5(6):165-9. PubMed ID: 3079233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mercury resistance is encoded by transferable giant linear plasmids in two chesapeake bay Streptomyces strains.
    Ravel J; Schrempf H; Hill RT
    Appl Environ Microbiol; 1998 Sep; 64(9):3383-8. PubMed ID: 9726886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.