These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 533276)

  • 1. Production of arsine and methylarsines in soil and in culture.
    Cheng CN; Focht DD
    Appl Environ Microbiol; 1979 Sep; 38(3):494-8. PubMed ID: 533276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of phosphate and other anions on trimethylarsine formation by Candida humicola.
    Cox DP; Alexander M
    Appl Microbiol; 1973 Mar; 25(3):408-13. PubMed ID: 4698862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Processes Mediating the Evolution of Methylarsine Gases from Dimethylarsenate in Paddy Soils.
    Chen C; Huang K; Xie WY; Chen SH; Tang Z; Zhao FJ
    Environ Sci Technol; 2017 Nov; 51(22):13190-13198. PubMed ID: 29099592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters.
    Huang H; Jia Y; Sun GX; Zhu YG
    Environ Sci Technol; 2012 Feb; 46(4):2163-8. PubMed ID: 22295880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM Arsenic(III) S-adenosine methyltransferase gene.
    Chen J; Sun GX; Wang XX; Lorenzo Vd; Rosen BP; Zhu YG
    Environ Sci Technol; 2014 Sep; 48(17):10337-44. PubMed ID: 25122054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils.
    Turpeinen R; Pantsar-Kallio M; Kairesalo T
    Sci Total Environ; 2002 Feb; 285(1-3):133-45. PubMed ID: 11874036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transformation of arsenicals by Candida humicola.
    Cullen WR; McBride BC; Pickett AW
    Can J Microbiol; 1979 Oct; 25(10):1201-5. PubMed ID: 534956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mono- and dimethylation of arsenic in rat liver cytosol in vitro.
    Styblo M; Delnomdedieu M; Thomas DJ
    Chem Biol Interact; 1996 Jan; 99(1-3):147-64. PubMed ID: 8620564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimethylarsine and trimethylarsine are potent genotoxins in vitro.
    Andrewes P; Kitchin KT; Wallace K
    Chem Res Toxicol; 2003 Aug; 16(8):994-1003. PubMed ID: 12924927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental biochemistry of arsenic.
    Tamaki S; Frankenberger WT
    Rev Environ Contam Toxicol; 1992; 124():79-110. PubMed ID: 1732996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atmospheric stability of arsine and methylarsines.
    Mestrot A; Merle JK; Broglia A; Feldmann J; Krupp EM
    Environ Sci Technol; 2011 May; 45(9):4010-5. PubMed ID: 21469665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of arsine evolution methods to environmental analyses.
    Braman RS
    Environ Health Perspect; 1977 Aug; 19():1-4. PubMed ID: 908282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione modulates recombinant rat arsenic (+3 oxidation state) methyltransferase-catalyzed formation of trimethylarsine oxide and trimethylarsine.
    Waters SB; Devesa V; Fricke MW; Creed JT; Stýblo M; Thomas DJ
    Chem Res Toxicol; 2004 Dec; 17(12):1621-9. PubMed ID: 15606138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase.
    Qin J; Rosen BP; Zhang Y; Wang G; Franke S; Rensing C
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2075-80. PubMed ID: 16452170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil.
    Mestrot A; Uroic MK; Plantevin T; Islam MR; Krupp EM; Feldmann J; Meharg AA
    Environ Sci Technol; 2009 Nov; 43(21):8270-5. PubMed ID: 19924955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolved organic matter differentially influences arsenic methylation and volatilization in paddy soils.
    Yan M; Zeng X; Wang J; Meharg AA; Meharg C; Tang X; Zhang L; Bai L; Zhang J; Su S
    J Hazard Mater; 2020 Apr; 388():121795. PubMed ID: 31818673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man.
    Buchet JP; Lauwerys R; Roels H
    Int Arch Occup Environ Health; 1981; 48(1):71-9. PubMed ID: 6894292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of arsenite to arsenate by Alcaligenes faecalis.
    Philips SE; Taylor ML
    Appl Environ Microbiol; 1976 Sep; 32(3):392-9. PubMed ID: 10837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic methylation of arsenic compounds: IV. In vitro and in vivo deficiency of the methylation of arsenite and monomethylarsonic acid in the guinea pig.
    Healy SM; Zakharyan RA; Aposhian HV
    Mutat Res; 1997 Jun; 386(3):229-39. PubMed ID: 9219561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China.
    Zhang Z; Yin N; Cai X; Wang Z; Cui Y
    J Environ Sci (China); 2016 Sep; 47():165-173. PubMed ID: 27593283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.