These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 533278)

  • 1. Biodegradation of polystyrene, poly(metnyl methacrylate), and phenol formaldehyde.
    Kaplan DL; Hartenstein R; Sutter J
    Appl Environ Microbiol; 1979 Sep; 38(3):551-3. PubMed ID: 533278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial degradation of [C14C]polystyrene and 1,3-diphenylbutane.
    Sielicki M; Focht DD; Martin JP
    Can J Microbiol; 1978 Jul; 24(7):798-803. PubMed ID: 98222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. White-rot fungi demonstrate first biodegradation of phenolic resin.
    Gusse AC; Miller PD; Volk TJ
    Environ Sci Technol; 2006 Jul; 40(13):4196-9. PubMed ID: 16856735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose degradation in anaerobic environments.
    Leschine SB
    Annu Rev Microbiol; 1995; 49():399-426. PubMed ID: 8561466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of polystyrene-graft-starch copolymers in three different types of soil.
    Nikolic V; Velickovic S; Popovic A
    Environ Sci Pollut Res Int; 2014; 21(16):9877-86. PubMed ID: 24792982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Qualitative microbiological changes during decomposition of plant material in a sandy sierozem soil.
    Neelakantan S; Mishra MM; Bhardwaj SK; Vyas SR
    Folia Microbiol (Praha); 1974; 19(1):55-8. PubMed ID: 4430478
    [No Abstract]   [Full Text] [Related]  

  • 7. Biodegradation of microbial and synthetic polyesters by fungi.
    Kim DY; Rhee YH
    Appl Microbiol Biotechnol; 2003 May; 61(4):300-8. PubMed ID: 12743758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decomposition of organic matter by fungi in saline soils.
    Malik KA; Sandhu GR
    Mycopathol Mycol Appl; 1973 Aug; 50(4):339-47. PubMed ID: 4795955
    [No Abstract]   [Full Text] [Related]  

  • 9. An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach.
    Ho BT; Roberts TK; Lucas S
    Crit Rev Biotechnol; 2018 Mar; 38(2):308-320. PubMed ID: 28764575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation and effect of formaldehyde and phenol on the denitrification process.
    Eiroa M; Vilar A; Amor L; Kennes C; Veiga MC
    Water Res; 2005; 39(2-3):449-55. PubMed ID: 15644253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.
    Mora-Gómez J; Elosegi A; Duarte S; Cássio F; Pascoal C; Romaní AM
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27288197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste.
    Przemieniecki SW; Kosewska A; Ciesielski S; Kosewska O
    Environ Pollut; 2020 Jan; 256():113265. PubMed ID: 31733968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of biocides on the microflora of soils and their degradation. 3. Interactions between modified populations of micro-organisms and the decomposition of plants for green-manure in comparison to the decomposition of straw (author's transl)].
    Höflich G
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(2):148-54. PubMed ID: 878708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The role of rat liver microsomes in the metabolism of methylmethacrylate to formaldehyde].
    Kotlovskiĭ IuV; Grishanova AIu; Mishin VM; Bachmanova GI
    Vopr Med Khim; 1988; 34(5):14-7. PubMed ID: 3218130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation.
    Li X; Lin X; Li P; Liu W; Wang L; Ma F; Chukwuka KS
    J Hazard Mater; 2009 Dec; 172(2-3):601-5. PubMed ID: 19682791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of polystyrene and selected analogues by biological Fenton chemistry approaches: Opportunities and limitations.
    Krueger MC; Seiwert B; Prager A; Zhang S; Abel B; Harms H; Schlosser D
    Chemosphere; 2017 Apr; 173():520-528. PubMed ID: 28131922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polystyrene to biodegradable PHA plastics.
    Booth B
    Environ Sci Technol; 2006 Apr; 40(7):2074-5. PubMed ID: 16646433
    [No Abstract]   [Full Text] [Related]  

  • 18. Methylotrophic extremophilic yeast Trichosporon sp.: a soil-derived isolate with potential applications in environmental biotechnology.
    Kaszycki P; Czechowska K; Petryszak P; Miedzobrodzki J; Pawlik B; Kołoczek H
    Acta Biochim Pol; 2006; 53(3):463-73. PubMed ID: 17019438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of synthetic polymers in soils: Tracking carbon into CO
    Zumstein MT; Schintlmeister A; Nelson TF; Baumgartner R; Woebken D; Wagner M; Kohler HE; McNeill K; Sander M
    Sci Adv; 2018 Jul; 4(7):eaas9024. PubMed ID: 30050987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence.
    Yang L; Gao J; Liu Y; Zhuang G; Peng X; Wu WM; Zhuang X
    Chemosphere; 2021 Jan; 262():127818. PubMed ID: 32771707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.