BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 5334969)

  • 1. Carbohydrate and lipid content of radiation-resistant and -sensitive strains of Escherichia coli.
    Woodside EE; Kocholaty W
    J Bacteriol; 1964 May; 87(5):1140-6. PubMed ID: 5334969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioconversion of corn stover derived pentose and hexose to ethanol using cascade simultaneous saccharification and fermentation (CSSF).
    Li X; Kim TH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):99-104. PubMed ID: 21909666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains.
    Unrean P; Srienc F
    J Biotechnol; 2010 Oct; 150(2):215-23. PubMed ID: 20699108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses.
    Trinh CT; Unrean P; Srienc F
    Appl Environ Microbiol; 2008 Jun; 74(12):3634-43. PubMed ID: 18424547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blocking hexose entry into glycolysis activates alternative metabolic conversion of these sugars and upregulates pentose metabolism in Aspergillus nidulans.
    Khosravi C; Battaglia E; Kun RS; Dalhuijsen S; Visser J; Aguilar-Pontes MV; Zhou M; Heyman HM; Kim YM; Baker SE; de Vries RP
    BMC Genomics; 2018 Mar; 19(1):214. PubMed ID: 29566661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol production from non-pretreated napiergrass through a simultaneous saccharification and fermentation process followed by a pentose fermentation with Escherichia coli KO11.
    Yasuda M; Miura A; Shiragami T; Matsumoto J; Kamei I; Ishii Y; Ohta K
    J Biosci Bioeng; 2012 Aug; 114(2):188-92. PubMed ID: 22595344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ultraviolet radiation on respiration and growth in radiation-resistant and radiation-sensitive strains of Escherichia coli B.
    Hamkalo BA; Swenson PA
    J Bacteriol; 1969 Sep; 99(3):815-23. PubMed ID: 4905539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomimetic properties of 2-amnipurine in Escherichia coli.
    Zampieri A; Greenberg J
    J Bacteriol; 1966 May; 91(5):1773-4. PubMed ID: 5327906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino sugar sensitivity in Escherichia coli mutants unable to grow on N-acetylglucosamine.
    Bernheim NJ; Dobrogosz WJ
    J Bacteriol; 1970 Feb; 101(2):384-91. PubMed ID: 4905307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis and biosynthetic pathways of pentoses in Escherichia coli.
    SABLE HZ; CASSISI EE
    J Bacteriol; 1962 Dec; 84(6):1169-72. PubMed ID: 13975889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-resistance relationships in Escherichia coli between ultraviolet radiation and nitrous acid.
    Zampieri A; Greenberg J
    J Bacteriol; 1964 May; 87(5):1094-9. PubMed ID: 5334968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic conversion of L-fucose to L-fuculose.
    GREEN M; COHEN SS
    J Biol Chem; 1956 Apr; 219(2):557-68. PubMed ID: 13319278
    [No Abstract]   [Full Text] [Related]  

  • 13. Efficient secretion of (R)-3-hydroxybutyric acid from Halomonas sp. KM-1 cultured with saccharified Japanese cedar under microaerobic conditions.
    Kawata Y; Jin YX; Nojiri M
    Bioresour Technol; 2013 Jul; 140():443-5. PubMed ID: 23719194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fructose-1, 6-diphosphatase and acid hexose phosphatase of Escherichia coli.
    Fraenkel DG; Horecker BL
    J Bacteriol; 1965 Oct; 90(4):837-42. PubMed ID: 4284917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival, deoxyribonucleic acid breakdown, and synthesis in Salmonella typhimurium as compared with Escherichia coli B strains.
    Hudnik-Plevnik TA; Djordjević N
    J Bacteriol; 1970 Aug; 103(2):342-7. PubMed ID: 4916313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar metabolism in transketolase mutants of Escherichia coli.
    Josephson BL; Fraenkel DG
    J Bacteriol; 1974 Jun; 118(3):1082-9. PubMed ID: 4597996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The metabolism of hexose and pentose phosphates in higher plants.
    AXELROD B; BANDURSKI RS; GREINER CM; JANG R
    J Biol Chem; 1953 Jun; 202(2):619-34. PubMed ID: 13061487
    [No Abstract]   [Full Text] [Related]  

  • 18. Non-severe thermochemical hydrolysis of stover from white corn and sequential enzymatic saccharification and fermentation to ethanol.
    Vargas-Tah A; Moss-Acosta CL; Trujillo-Martinez B; Tiessen A; Lozoya-Gloria E; Orencio-Trejo M; Gosset G; Martinez A
    Bioresour Technol; 2015 Dec; 198():611-8. PubMed ID: 26433785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved strains of recombinant Escherichia coli for ethanol production from sugar mixtures.
    Lindsay SE; Bothast RJ; Ingram LO
    Appl Microbiol Biotechnol; 1995 Apr; 43(1):70-5. PubMed ID: 7766137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metabolism of species of streptomyces. IX. Metabolism of pentose and hexose phosphates.
    COCHRANE VW; HAWLEY PL
    J Bacteriol; 1956 Mar; 71(3):308-14. PubMed ID: 13306700
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.