These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 5335769)

  • 21. Biochemical characterization of cellulose-binding proteins (CBPA and CBPB) from the rumen cellulolytic bacterium Eubacterium cellulosolvens 5.
    Yoshimatsu M; Toyoda A; Onizawa N; Nakamura Y; Minato H
    Biosci Biotechnol Biochem; 2007 Oct; 71(10):2577-80. PubMed ID: 17928689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellulose degradation by Ruminococcus.
    Leatherwood JM
    Fed Proc; 1973 Jul; 32(7):1814-8. PubMed ID: 4718899
    [No Abstract]   [Full Text] [Related]  

  • 23. Nutritional requirements of the predominant rumen cellulolytic bacteria.
    Bryant MP
    Fed Proc; 1973 Jul; 32(7):1809-13. PubMed ID: 4718898
    [No Abstract]   [Full Text] [Related]  

  • 24. Improvement of methane production from waste paper by pretreatment with rumen fluid.
    Baba Y; Tada C; Fukuda Y; Nakai Y
    Bioresour Technol; 2013 Jan; 128():94-9. PubMed ID: 23196227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions of microbial populations in cellulose fermentation.
    Wolin MJ; Miller TL
    Fed Proc; 1983 Jan; 42(1):109-13. PubMed ID: 6848372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of nitrate and molybdenum on sulfur utilization by rumen microorganisms.
    Spears JW; Bush LP; Ely DG
    J Dairy Sci; 1977 Dec; 60(12):1889-93. PubMed ID: 563877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of growth characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium.
    Teunissen MJ; Op den Camp HJ; Orpin CG; Huis in 't Veld JH; Vogels GD
    J Gen Microbiol; 1991 Jun; 137(6):1401-8. PubMed ID: 1919514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH?
    Russell JB; Wilson DB
    J Dairy Sci; 1996 Aug; 79(8):1503-9. PubMed ID: 8880476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Tween 60 and Tween 80 on protease activity, thiol group reactivity, protein adsorption, and cellulose degradation by rumen microbial enzymes.
    Kamande GM; Baah J; Cheng KJ; McAllister TA; Shelford JA
    J Dairy Sci; 2000 Mar; 83(3):536-42. PubMed ID: 10750112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells.
    Rismani-Yazdi H; Christy AD; Dehority BA; Morrison M; Yu Z; Tuovinen OH
    Biotechnol Bioeng; 2007 Aug; 97(6):1398-407. PubMed ID: 17274068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competition between ruminal cellulolytic bacteria for adhesion to cellulose.
    Mosoni P; Fonty G; Gouet P
    Curr Microbiol; 1997 Jul; 35(1):44-7. PubMed ID: 9175559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prevention of fungal colonization and digestion of cellulose by the addition of methylcellulose.
    Cheng KJ; Kudo H; Duncan SH; Mesbah A; Stewart CS; Bernalier A; Fonty G; Costerton JW
    Can J Microbiol; 1991 Jun; 37(6):484-7. PubMed ID: 1913353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Change in the microflora of the rumen in young cattle].
    Mineev VS
    Veterinariia; 1968 Feb; 45(2):38-9. PubMed ID: 5658813
    [No Abstract]   [Full Text] [Related]  

  • 34. Plant cell wall degrading enzyme complexes from the cellulolytic rumen bacterium Ruminococcus flavefaciens.
    Kirby J; Aurilia V; McCrae SI; Martin JC; Flint HJ
    Biochem Soc Trans; 1998 May; 26(2):S169. PubMed ID: 9649844
    [No Abstract]   [Full Text] [Related]  

  • 35. A cellulolytic fungal biofilm enhances the consolidated bioconversion of cellulose to short chain fatty acids by the rumen microbiome.
    Xiros C; Shahab RL; Studer MH
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3355-3365. PubMed ID: 30847541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrolytic activities of rumen ciliates.
    Delfosse-Debusscher J; Van Hoof F; Hellings P; Thines-Sempoux D
    Ann Rech Vet; 1979; 10(2-3):258-60. PubMed ID: 119467
    [No Abstract]   [Full Text] [Related]  

  • 37. The effect of ammonia treatment on the solubilization of straw and the growth of cellulolytic rumen bacteria.
    Kolankaya N; Stewart CS; Duncan SH; Cheng KJ; Costerton JW
    J Appl Bacteriol; 1985 Apr; 58(4):371-9. PubMed ID: 3997690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of H(2) from cellulose by rumen microorganisms: effects of inocula pre-treatment and enzymatic hydrolysis.
    Ratti RP; Botta LS; Sakamoto IK; Silva EL; Varesche MB
    Biotechnol Lett; 2014 Mar; 36(3):537-46. PubMed ID: 24190478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of cellulose solubilisation rates in rumen and landfill leachate inoculated reactors.
    O'Sullivan CA; Burrell PC; Clarke WP; Blackall LL
    Bioresour Technol; 2006 Dec; 97(18):2356-63. PubMed ID: 16314094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellulosic waste degradation by rumen-enhanced anaerobic digestion.
    Barnes SP; Keller J
    Water Sci Technol; 2003; 48(4):155-62. PubMed ID: 14531434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.