These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 5337775)

  • 41. Cell division after inhibition of DNA and protein synthesis in Neisseria meningitidis. 2. Residual division and increase in absorbancy in exponential phase cultures after addition of hydroxyurea and chloramphenicol.
    Jyssum TK
    Acta Pathol Microbiol Scand B Microbiol Immunol; 1973 Feb; 81(1):127-37. PubMed ID: 4199587
    [No Abstract]   [Full Text] [Related]  

  • 42. Accumulation of 30S preribosomal ribonucleic acid in an Escherichia coli mutant treated with chloramphenicol.
    Schlessinger D; Ono M; Nikolaev N; Silengo L
    Biochemistry; 1974 Oct; 13(21):4268-71. PubMed ID: 4606170
    [No Abstract]   [Full Text] [Related]  

  • 43. Effects of treatment with sodium dodecyl sulfate on the ultrastructure of Escherichia coli.
    Woldringh CL; van Iterson W
    J Bacteriol; 1972 Sep; 111(3):801-13. PubMed ID: 4559830
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Growth, cell division, and fragmentation in a species of Flexibacter.
    Poos JC; Turner FR; White D; Simon GD; Bacon K; Russell CT
    J Bacteriol; 1972 Dec; 112(3):1387-95. PubMed ID: 4118297
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rifampin disrupts conjugal and chromosomal deoxyribonucleic acid metabolism in Escherichia coli K-12 carrying some IncIalpha plasmids.
    Boulnois GJ; Beddoes MJ; Wilkins BM
    J Bacteriol; 1979 May; 138(2):324-32. PubMed ID: 374382
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cell division after inhibition of DNA and protein synthesis in Neisseria meningitidis. 1. Blockage of division in synchronized populations by hydroxyurea and chloramphenicol.
    Jyssum K
    Acta Pathol Microbiol Scand B Microbiol Immunol; 1973 Feb; 81(1):120-6. PubMed ID: 4199586
    [No Abstract]   [Full Text] [Related]  

  • 47. Inhibition of the peptide bond synthesizing cycle by chloramphenicol.
    Weber MJ; DeMoss JA
    J Bacteriol; 1969 Mar; 97(3):1099-105. PubMed ID: 4887499
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mode of action of chloramphenicol. VII. Growth and multiplication of Escherichia coli in the presence of chloramphenicol.
    ALLISON JL; HARTMAN RE; HARTMAN RS; WOLFE AD; CIAK J; HAHN FE
    J Bacteriol; 1962 Mar; 83(3):609-15. PubMed ID: 13860618
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The inhibition by chloramphenicol of nascent protein formation in E. coli.
    Weber MJ; DeMoss JA
    Proc Natl Acad Sci U S A; 1966 May; 55(5):1224-30. PubMed ID: 5334202
    [No Abstract]   [Full Text] [Related]  

  • 50. Polyribosome metabolism in Escherichia coli. I. Extraction of polyribosomes and ribosomal subunits from fragile, growing Escherichia coli.
    Mangiarotti G; Schlessinger D
    J Mol Biol; 1966 Sep; 20(1):123-43. PubMed ID: 5339327
    [No Abstract]   [Full Text] [Related]  

  • 51. The effect of 6-azauracil on microorganisms inhibited by chloramphenicol.
    HABERMANN V
    Biochim Biophys Acta; 1961 Apr; 49():204-11. PubMed ID: 13710252
    [No Abstract]   [Full Text] [Related]  

  • 52. Action of hydroxyurea on Anabaena variabilis. II. Effects of pre- and post-treatment with chloramphenicol and base analogues.
    Singh MK; Kumar HD
    Arch Mikrobiol; 1969; 67(1):91-8. PubMed ID: 4988639
    [No Abstract]   [Full Text] [Related]  

  • 53. Induction of excessive deoxyribonucleic acid synthesis in Escherichia coli by nalidixic acid.
    Boyle JV; Goss WA; Cook TM
    J Bacteriol; 1967 Nov; 94(5):1664-71. PubMed ID: 4862201
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of protein and ribonucleic acid synthesis on the replication of the bacteriocinogenic factor Clo DF13 in Escherichia coli cells and minicells.
    Veltkamp E; Barendsen W; Nijkamp HJ
    J Bacteriol; 1974 Apr; 118(1):165-74. PubMed ID: 4595194
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of miracil D to suppress bacterial ribonucleic acid and protein synthesis during bacteriophage MS2 infection.
    Cramer JH; Sinsheimer RL
    J Virol; 1972 Feb; 9(2):189-99. PubMed ID: 4552414
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ribosome formation in the absence of protein synthesis by a spheroplast membrane system from Escherichia coli.
    Nagata Y; Maruo B
    J Biochem; 1967 Dec; 62(6):769-71. PubMed ID: 4872424
    [No Abstract]   [Full Text] [Related]  

  • 57. Regulation of macromolecular synthesis by putrescine in a conditional Escherichia coli putrescine auxotroph.
    Young DV; Srinivasan PR
    J Bacteriol; 1972 Oct; 112(1):30-9. PubMed ID: 4562399
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of chloramphenicol analogs on protein biosynthesis in a cell-free Escherichia coli B system.
    Telesnina GN; Novikova MA; Zhdanov GL; Kolosov MN; Shemyakin MM
    Experientia; 1967 Jun; 23(6):427-8. PubMed ID: 4863491
    [No Abstract]   [Full Text] [Related]  

  • 59. Ultrastructure of Escherichia coli cells infected with bacteriophage R17.
    Franklin RM; Granboulan N
    J Bacteriol; 1966 Feb; 91(2):834-48. PubMed ID: 5327373
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of chloramphenicol on chloroplast and mitochondrial ultrastructure in Ochromonas danica.
    Smith-Johannsen H; Gibbs SP
    J Cell Biol; 1972 Mar; 52(3):598-614. PubMed ID: 5009522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.