These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 5337848)

  • 61. Effects of 5-fluorouracil and 6-azauracil on the synthesis of ribonucleic acid and protein in Saccharomyces carlsbergensis.
    de Kloet SR
    Biochem J; 1968 Jan; 106(1):167-78. PubMed ID: 5756480
    [TBL] [Abstract][Full Text] [Related]  

  • 62. New temperature-sensitive mutants of Saccharomyces cerevisiae affecting DNA replication.
    Dumas LB; Lussky JP; McFarland EJ; Shampay J
    Mol Gen Genet; 1982; 187(1):42-6. PubMed ID: 6761543
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Reinitiation of deoxyribonucleic acid synthesis by deoxyribonucleic acid initiation mutants of Escherichia coli: role of ribonucleic acid synthesis, protein synthesis, and cell division.
    Hanna MH; Carl PL
    J Bacteriol; 1975 Jan; 121(1):219-26. PubMed ID: 1090569
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Neurospora crassa temperature-sensitive mutant apparently defective in protein synthesis.
    Loo M
    J Bacteriol; 1975 Jan; 121(1):286-95. PubMed ID: 123244
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nucleotide sequence and characterization of temperature-sensitive pol1 mutants of Saccharomyces cerevisiae.
    Lucchini G; Muzi Falconi M; Pizzagalli A; Aguilera A; Klein HL; Plevani P
    Gene; 1990 May; 90(1):99-104. PubMed ID: 2199334
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA.
    Amberg DC; Goldstein AL; Cole CN
    Genes Dev; 1992 Jul; 6(7):1173-89. PubMed ID: 1628825
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Growth and cell division during nitrogen starvation of the yeast Saccharomyces cerevisiae.
    Johnston GC; Singer RA; McFarlane S
    J Bacteriol; 1977 Nov; 132(2):723-30. PubMed ID: 334751
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A suppressor of temperature-sensitive rna mutations that affect mRNA metabolism in Saccharomyces cerevisiae.
    Pearson NJ; Thorburn PC; Haber JE
    Mol Cell Biol; 1982 May; 2(5):571-77. PubMed ID: 7050675
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Significance of ribosomal ribonucleic acid synthesis for control of the G1 period in the cell cycle of the heterobasidiomycetous yeast Rhodosporidium toruloides.
    Yamashita I; Fukui S
    J Bacteriol; 1980 Nov; 144(2):772-80. PubMed ID: 7430071
    [TBL] [Abstract][Full Text] [Related]  

  • 70. On the regulation of ribosomal RNA synthesis in yeast.
    Schweizer E; Halvorson HO
    Exp Cell Res; 1969 Aug; 56(2):239-44. PubMed ID: 5824444
    [No Abstract]   [Full Text] [Related]  

  • 71. Mitochondrial DNA synthesis in cell cycle mutants of Saccharomyces cerevisiae.
    Newlon CS; Fangman WL
    Cell; 1975 Aug; 5(4):423-8. PubMed ID: 1098780
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Growth patterns of temperature-sensitive mutants of Western equine encephalitis virus in cultured Aedes albopictus (mosquito) cells.
    Simizu B; Maeda S
    J Gen Virol; 1981 Oct; 56(Pt 2):349-61. PubMed ID: 7310379
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Carbon and energetic uncoupling are associated with block of division at different stages of the cell cycle in several cdc mutants of Saccharomyces cerevisiae.
    Aon MA; Mónaco ME; Cortassa S
    Exp Cell Res; 1995 Mar; 217(1):42-51. PubMed ID: 7867719
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Temperature-sensitive variants of Saccharomyces cerevisiae iso-1-cytochrome c produced by random mutagenesis of codons 43 to 54.
    Wang XH; Pielak GJ
    J Mol Biol; 1991 Sep; 221(1):97-105. PubMed ID: 1656051
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Isolation and analysis of a mammalian temperature-sensitive mutant defective in G2 functions.
    Mineo C; Murakami Y; Ishimi Y; Hanaoka F; Yamada M
    Exp Cell Res; 1986 Nov; 167(1):53-62. PubMed ID: 2428648
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Temperature-sensitive mutants of the yeast fatty-acid-synthetase complex.
    Knobling A; Schweizer E
    Eur J Biochem; 1975 Nov; 59(2):415-21. PubMed ID: 1107031
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization of Saccharomyces cerevisiae dna2 mutants suggests a role for the helicase late in S phase.
    Fiorentino DF; Crabtree GR
    Mol Biol Cell; 1997 Dec; 8(12):2519-37. PubMed ID: 9398673
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of staurosporine-sensitive mutants of Saccharomyces cerevisiae: vacuolar functions affect staurosporine sensitivity.
    Yoshida S; Anraku Y
    Mol Gen Genet; 2000 Jun; 263(5):877-88. PubMed ID: 10905355
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular basis for the maximum growth temperature of an obligately psychrophilic yeast, Leucosporidium stokesii.
    Silver SA; Yall I; Sinclair NA
    J Bacteriol; 1977 Nov; 132(2):676-80. PubMed ID: 914781
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Studies on microbial ribonucleic acid. VI. Appearance of methyl-deficient transfer ribonucleic acid during logarithmic growth of Saccharomyces cerevisiae.
    Kjellin-Stråby K; Phillips JH
    J Bacteriol; 1968 Sep; 96(3):760-7. PubMed ID: 5732508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.