These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 5339550)

  • 21. Glutamine synthetase deadenylation: a phosphorolytic reaction yielding ADP as nucleotide product.
    Anderson WB; Stadtman ER
    Biochem Biophys Res Commun; 1970 Nov; 41(3):704-9. PubMed ID: 4920873
    [No Abstract]   [Full Text] [Related]  

  • 22. [Biosynthesis of ribosylamine-5-phosphate: role of carbamyl phosphate and influence of pyrimidine nucleotides].
    Le Gal Y; Le Gal ML
    C R Seances Soc Biol Fil; 1970; 164(6):1217-21. PubMed ID: 4252354
    [No Abstract]   [Full Text] [Related]  

  • 23. Studies on the acid-soluble nucleotide pool in thymine-requiring mutants of Escherichia coli during thymine starvation. 3. On the regulation of the deoxyadenosine triphosphate and deoxycytidine triphosphate pools of Escherichia coli.
    Neuhard J
    Biochim Biophys Acta; 1966 Oct; 129(1):104-15. PubMed ID: 4226256
    [No Abstract]   [Full Text] [Related]  

  • 24. Fixation of carbon dioxide by carbamyl phosphate synthetase of Escherichia coli. Evidence for a reversibly formed intermediate.
    Duffield PH; Kalman SM; Brauman JI
    Biochim Biophys Acta; 1969 Jan; 171(1):189-91. PubMed ID: 4884140
    [No Abstract]   [Full Text] [Related]  

  • 25. Formation of pyrophosphate during ATP: glutamine synthetase-adenylyltransferase-reaction in E. coli.
    Heinrich CP; Battig FA; Mantel M; Holzer H
    Arch Mikrobiol; 1970; 73(2):104-10. PubMed ID: 4321114
    [No Abstract]   [Full Text] [Related]  

  • 26. Succinyl phosphate and the succinyl coenzyme A synthetase reaction.
    Hildebrand JG; Spector LB
    J Biol Chem; 1969 May; 244(10):2606-13. PubMed ID: 4890228
    [No Abstract]   [Full Text] [Related]  

  • 27. Control of pyrimidine biosynthesis in mammalian tissues. V. Regulation of glutamine-dependent carbamyl phosphate synthetase: activation by 5-phosphoribosyl 1-pyrophosphate and inhibition by uridine triphosphate.
    Tatibana M; Shigesada K
    J Biochem; 1972 Sep; 72(3):549-60. PubMed ID: 4564295
    [No Abstract]   [Full Text] [Related]  

  • 28. Pyrimidine nucleotide biosynthesis in Phaseolus aureus. Enzymic aspects of the control of carbamoyl phosphate synthesis and utilization.
    Ong BL; Jackson JF
    Biochem J; 1972 Sep; 129(3):583-93. PubMed ID: 4572794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbamyl phosphate-dependent ATP synthesis catalyzed by formyltetrahydrofolate synthetase.
    Buttlaire DH; Balfe CA; Wendland MF; Himes RH
    Biochim Biophys Acta; 1979 Apr; 567(2):453-63. PubMed ID: 444533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate specificity of CTP-synthetase from E. coli.
    Scheit KH; Linke HJ
    Nucleic Acids Symp Ser; 1981; (9):229-33. PubMed ID: 7029474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adenosine triphosphate and catabolite repression of -galactosidase in escherichia coli.
    Aboud M; Burger M
    Biochem Biophys Res Commun; 1971 Oct; 45(1):190-7. PubMed ID: 4334523
    [No Abstract]   [Full Text] [Related]  

  • 32. Discovery of a new flavin phosphate synthetase which requires guanosine-5'-triphosphate.
    Tachibana S
    J Vitaminol (Kyoto); 1967 Jun; 13(2):89-92. PubMed ID: 6053380
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of methylthioinosine on nucleotide concentrations in L5178Y cells.
    Warnick CT; Paterson AR
    Cancer Res; 1973 Jul; 33(7):1711-5. PubMed ID: 4737232
    [No Abstract]   [Full Text] [Related]  

  • 34. The role of DNA in RNA synthesis, IX. Nucleoside triphosphate termini in RNA polymerase products.
    Maitra U; Hurwitz H
    Proc Natl Acad Sci U S A; 1965 Sep; 54(3):815-22. PubMed ID: 5324397
    [No Abstract]   [Full Text] [Related]  

  • 35. Effect of potassium cyanate on the catalytic activities of carbamyl phosphate synthetase.
    Anderson PM; Carlson JD; Rosenthal GA; Meister A
    Biochem Biophys Res Commun; 1973 Nov; 55(1):246-52. PubMed ID: 4361273
    [No Abstract]   [Full Text] [Related]  

  • 36. Allosteric effects and substrate specificity of the ribonucleoside diphosphate reductase system from Escherichia coli B.
    Larsson A; Reichard P
    Biochim Biophys Acta; 1966 Feb; 113(2):407-8. PubMed ID: 5328937
    [No Abstract]   [Full Text] [Related]  

  • 37. Evidence for the presence of two nonidentical subunits in carbamyl phosphate synthetase of Escherichia coli.
    Matthews SL; Anderson PM
    Biochemistry; 1972 Mar; 11(7):1176-83. PubMed ID: 4552049
    [No Abstract]   [Full Text] [Related]  

  • 38. The influence of inorganic phosphate, adenosine triphosphate and glucose 6-phosphate on the activity of liver glycogen synthetase.
    de Wulf H; Hers HG
    Eur J Biochem; 1968 Dec; 6(4):545-51. PubMed ID: 5701970
    [No Abstract]   [Full Text] [Related]  

  • 39. Ribosome degradation and the degradation products in starved Escherichia coli. I. Comparison of the degradation rate and of the nucleotide pool between Escherichia coli B and Q-13 strains in phosphate deficiency.
    Maruyama H; Mizuno D
    Biochim Biophys Acta; 1970 Jan; 199(1):159-65. PubMed ID: 4905130
    [No Abstract]   [Full Text] [Related]  

  • 40. Carbamyl phosphate: an allosteric substrate for aspartate transcarbamylase of Escherichia coli.
    Bethell MR; Smith KE; White JS; Jones ME
    Proc Natl Acad Sci U S A; 1968 Aug; 60(4):1442-9. PubMed ID: 4877273
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.