These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 5340610)

  • 41. Influence of growth condition on the concentration of potassium in Bacillus subtilis var. niger and its possible relationship to cellular ribonucleic acid, teichoic acid and teichuronic acid.
    Tempest DW; Dicks JW; Ellwood DC
    Biochem J; 1968 Jan; 106(1):237-43. PubMed ID: 4976492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphate glass as a phosphate source in high cell density Escherichia coli fermentations.
    Curless C; Baclaski J; Sachdev R
    Biotechnol Prog; 1996; 12(1):22-5. PubMed ID: 8845106
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli.
    Beard SJ; Hashim R; Wu G; Binet MR; Hughes MN; Poole RK
    FEMS Microbiol Lett; 2000 Mar; 184(2):231-5. PubMed ID: 10713426
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Low-affinity potassium uptake system in the archaeon Methanobacterium thermoautotrophicum: overproduction of a 31-kilodalton membrane protein during growth on low-potassium medium.
    Glasemacher J; Siebers A; Altendorf K; Schönheit P
    J Bacteriol; 1996 Feb; 178(3):728-34. PubMed ID: 8550507
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reversibility and partial reactions of the Na(+)-K+ pump of rat erythrocytes.
    Duhm J; Zicha J
    Physiol Bohemoslov; 1990; 39(1):3-14. PubMed ID: 2142785
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Continued growth of Escherichia coli after stopping medium addition to a K+-limited chemostat culture.
    Mulder MM; Van der Gulden HM; Postma PW; Van Dam K
    J Gen Microbiol; 1988 Mar; 134(3):777-83. PubMed ID: 3053977
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The inhibition of K + and phosphate uptake in yeast by cycloheximide.
    Reilly C; Fuhrmann GF; Rethstein A
    Biochim Biophys Acta; 1970 Jun; 203(3):583-5. PubMed ID: 5523750
    [No Abstract]   [Full Text] [Related]  

  • 48. [Character of K+ absorption and its interaction with membrane protein pumps in Escherichia coli, grown under anaerobic conditions in the presence of nitrate].
    Bagramian KA; Vasilian AV; Trchunian AA
    Biofizika; 1996; 41(2):377-83. PubMed ID: 8723655
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum).
    Nishanth D; Biswas DR
    Bioresour Technol; 2008 Jun; 99(9):3342-53. PubMed ID: 17905580
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The conserved dipole in transmembrane helix 5 of KdpB in the Escherichia coli KdpFABC P-type ATPase is crucial for coupling and the electrogenic K+-translocation step.
    Becker D; Fendler K; Altendorf K; Greie JC
    Biochemistry; 2007 Dec; 46(48):13920-8. PubMed ID: 17994765
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Properties of yeast grown anaerobically in media limiting in potassium.
    Bartley W; Broomhead V
    Biochem J; 1971 Feb; 121(3):461-7. PubMed ID: 4330378
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The distribution of inorganic phosphate in amphibian muscle.
    BRINER GP; SIMON SE; SHAW FH
    J Gen Physiol; 1958 Mar; 41(4):755-66. PubMed ID: 13514009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energetic consequences of two mutations in Escherichia coli K+ uptake systems for growth under potassium-limited conditions in the chemostat.
    Mulder MM; van der Gulden HM; Postma PW; van Dam K
    Biochim Biophys Acta; 1988 Mar; 933(1):65-9. PubMed ID: 3280029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of iron-limitation of Escherichia coli on growth, the respiratory chains and gallium uptake.
    Hubbard JA; Lewandowska KB; Hughes MN; Poole RK
    Arch Microbiol; 1986 Oct; 146(1):80-6. PubMed ID: 3545122
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Uptake and extrusion of k+ regulated by extracellular pH in Escherichia coli.
    Yamasaki K; Moriyama Y; Futai M; Tsuchiya T
    FEBS Lett; 1980 Oct; 120(1):125-7. PubMed ID: 7002607
    [No Abstract]   [Full Text] [Related]  

  • 56. Quantitative analysis of potassium ion pool in Escherichia coli K-12.
    Nakajima H; Yamato I; Anraku Y
    J Biochem; 1979 Jan; 85(1):303-10. PubMed ID: 368050
    [No Abstract]   [Full Text] [Related]  

  • 57. Abnormal phosphorus metabolism in a potassium transport mutant of Escherichia coli.
    Damadian R
    Biochim Biophys Acta; 1967 May; 135(2):378-80. PubMed ID: 5341254
    [No Abstract]   [Full Text] [Related]  

  • 58. Growth of Escherichia coli B in a continuous culture under limitation by inorganic phosphate.
    Slezák J; Sikyta B
    Folia Microbiol (Praha); 1967; 12(5):440-6. PubMed ID: 4861899
    [No Abstract]   [Full Text] [Related]  

  • 59. Biochemistry of inorganic polyphosphates.
    Kulaev IS
    Rev Physiol Biochem Pharmacol; 1975; 73():131-58. PubMed ID: 175427
    [No Abstract]   [Full Text] [Related]  

  • 60. Cation Transport in Escherichia coli: V. Regulation of cation content.
    Epstein W; Schultz SG
    J Gen Physiol; 1965 Nov; 49(2):221-34. PubMed ID: 19873561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.