These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 5340646)

  • 1. Hemodynamic effects of changes in arterial carbon dioxide tension during intermittent positive pressure ventilation.
    Morgan BC; Crawford EW; Hornbein TF; Martin WE; Guntheroth WG
    Anesthesiology; 1967; 28(5):866-73. PubMed ID: 5340646
    [No Abstract]   [Full Text] [Related]  

  • 2. Intermittent positive pressure and extrathoracic assisted breathing in hypovolemia. Comparative hemodynamic effects.
    Cook TI; Trimble C; Smith DE; Rehman I; Trummer MJ
    Arch Surg; 1971 Jun; 102(6):586-8. PubMed ID: 4930756
    [No Abstract]   [Full Text] [Related]  

  • 3. The hemodynamic effects of changes in blood volume during intermittent positive-pressure ventilation.
    Morgan BC; Crawford EW; Guntheroth WG
    Anesthesiology; 1969 Mar; 30(3):297-305. PubMed ID: 4888121
    [No Abstract]   [Full Text] [Related]  

  • 4. A comparative study of pulmonary and circulatory effects of extrathoracic assisted breathing and intermittent positive pressure breathing.
    Cook TI; Trimble FC; Welch WC; Rehman I; Trummer MJ
    Int Surg; 1971 Aug; 56(2):63-7. PubMed ID: 4934614
    [No Abstract]   [Full Text] [Related]  

  • 5. Cardiac output and venous admixture during intermittent positive pressure breathing. Influence of respiratory frequency and arterial carbon dioxide tension.
    Hedenstierna G; Löfström JB
    Br J Anaesth; 1973 Dec; 45(12):1201-5. PubMed ID: 4595286
    [No Abstract]   [Full Text] [Related]  

  • 6. Hemodynamic responses to mechanical ventilation with PEEP: the effect of hypervolemia.
    Qvist J; Pontoppidan H; Wilson RS; Lowenstein E; Laver MB
    Anesthesiology; 1975 Jan; 42(1):45-55. PubMed ID: 234210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal hemodynamics and function with continuous positive-pressure ventilation in dogs.
    Hall SV; Johnson EE; Hedley-Whyte J
    Anesthesiology; 1974 Nov; 41(5):452-61. PubMed ID: 4611279
    [No Abstract]   [Full Text] [Related]  

  • 8. Cardiorespiratory and pathologic changes during transtracheal ventilation in dogs.
    McDermott RW; Boyd WA
    Arch Surg; 1973 Sep; 107(3):452-5. PubMed ID: 4783040
    [No Abstract]   [Full Text] [Related]  

  • 9. Cardiopulmonary consequences of positive end-expiratory pressure.
    Holzman BH; Scarpelli EM
    Pediatr Res; 1979 Oct; 13(10):1112-20. PubMed ID: 388332
    [No Abstract]   [Full Text] [Related]  

  • 10. Hemodynamic effects of mechanical ventilation in normal and distressed newborn lambs. A comparison of negative pressure and positive pressure respirators.
    Shepard FM; Arango LA; Simmons JG; Berry FA
    Biol Neonate; 1971; 19(1):83-100. PubMed ID: 4945495
    [No Abstract]   [Full Text] [Related]  

  • 11. Blood flow to the lung and gas exchange.
    West JB
    Anesthesiology; 1974 Aug; 41(2):124-38. PubMed ID: 4604168
    [No Abstract]   [Full Text] [Related]  

  • 12. Haemodynamic effects of intermittent positive-pressure ventilation with and without an end-inspiratory pause.
    Nordström L
    Acta Anaesthesiol Scand Suppl; 1972; 47():29-56. PubMed ID: 4561011
    [No Abstract]   [Full Text] [Related]  

  • 13. Canine bilateral lung autotransplantation--postoperative ventilatory and hemodynamic responses to carbon dioxide.
    Fujimura S; Parmley WW; Tomoda H; Norman JR; Matloff JM
    J Surg Res; 1973 Aug; 15(2):105-11. PubMed ID: 4579729
    [No Abstract]   [Full Text] [Related]  

  • 14. The effect of pre-existing pulmonary vascular disease on the response to mechanical ventilation with PEEP following open-heart surgery.
    Trichet B; Falke K; Togut A; Laver MB
    Anesthesiology; 1975 Jan; 42(1):56-67. PubMed ID: 234211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central circulation during respirator treatment. Influence of respiratory frequency and minute ventilation.
    Hedenstierna G
    Scand J Respir Dis; 1972; 53(3):161-73. PubMed ID: 4559608
    [No Abstract]   [Full Text] [Related]  

  • 16. Influence of changes in cardiac output on the acid-base status of arterial and mixed venous blood.
    Hoogeveen YL; Zock JP; Rispens P; Zijlstra WG
    Pflugers Arch; 1987 Oct; 410(3):257-62. PubMed ID: 3120146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of continuous positive-pressure ventilation and steroids on aspiration of hydrochloric acid (pH 1.8) in dogs.
    Chapman RL; Modell JH; Ruiz BC; Calderwood HW; Hood CI; Graves SA
    Anesth Analg; 1974; 53(4):556-62. PubMed ID: 4601503
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of hypo-, normo-, and hypercarbia in dogs with acute cardiac tamponade.
    Koller ME; Smith RB; Sjöstrand U; Breivik H
    Anesth Analg; 1983 Feb; 62(2):181-5. PubMed ID: 6402955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of variations in inspiratory: expiratory ratio on cardiorespiratory function during controlled ventilation in normo-, and hypo-and hypervolaemic dogs.
    Finlay WE; Wightman AE; Adams AP; Sykes MK
    Br J Anaesth; 1970 Nov; 42(11):935-40. PubMed ID: 5488358
    [No Abstract]   [Full Text] [Related]  

  • 20. Cardiovascular and respiratory responses of ducks to progressive hypocapnic hypoxia.
    Jones DR; Holeton GF
    J Exp Biol; 1972 Jun; 56(3):657-66. PubMed ID: 4668719
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.