These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 5340657)
21. Vitamin B 12 and methionine synthesis in Escherichia coli. Dawes J; Foster MA Biochim Biophys Acta; 1971 Jun; 237(3):455-64. PubMed ID: 4940764 [No Abstract] [Full Text] [Related]
22. N5-methyltetrahydrofolate-homocysteine transmethylase. Propylation characteristics with the use of a chemical reducing system and purified enzyme. Taylor RT; Weissbach H J Biol Chem; 1967 Apr; 242(7):1509-16. PubMed ID: 6023219 [No Abstract] [Full Text] [Related]
23. The microbial biosynthesis of methionine. Salem AR; Foster MA Biochem J; 1972 May; 127(5):845-53. PubMed ID: 4627687 [TBL] [Abstract][Full Text] [Related]
24. THE FORMATION OF CH4 FROM N-5-METHYLTETRAHYDROFOLATE MONOGLUTAMATE BY CELL-FREE EXTRACTS OF METHANOBACILLUS OMELIANSKII. WOOD JM; WOLFE RS Biochem Biophys Res Commun; 1965 Apr; 19():306-11. PubMed ID: 14317394 [No Abstract] [Full Text] [Related]
25. Role of vitamin B12 in methionine synthesis. Weissbach H; Taylor R Fed Proc; 1966; 25(6):1649-56. PubMed ID: 5927398 [No Abstract] [Full Text] [Related]
26. Aspartate transcarbamylase is not a ping-pong enzyme. Schaffer MH; Stark GR Biochem Biophys Res Commun; 1972 Mar; 46(6):2082-6. PubMed ID: 4553155 [No Abstract] [Full Text] [Related]
27. [The character of antagonism of cobalamin monocarbonic acid against various analogues of cobalamin. II. The binding of cobalamin monocarbonic acid and various factors of vitamin B 12 by the bacterium Escherichia coli 113-3]. Simon A Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1969; 123(6):586-92. PubMed ID: 4912750 [No Abstract] [Full Text] [Related]
28. Inhibition of N5-methyltetrahydrofolate - homocysteine transmethylase by a vitamin B12-antimetabolite. Kageyama M; Perlman D Biochem Biophys Res Commun; 1976 May; 76(2):420-3. PubMed ID: 829218 [No Abstract] [Full Text] [Related]
29. Folic acid and the methylation of homocysteine by Bacillus subtilis. Salem AR; Pattison JR; Foster MA Biochem J; 1972 Feb; 126(4):993-1004. PubMed ID: 4627401 [TBL] [Abstract][Full Text] [Related]
30. Incorporation of 5-fluorouracil into the transfer RNA of Escherichia coli K12W6 and its effect on the methylation of uracil. Baliga BS; Hendler S; Srinivasan PR Biochim Biophys Acta; 1969 Jul; 186(1):25-32. PubMed ID: 4897215 [No Abstract] [Full Text] [Related]
31. SYNTHESIS OF ENANTIOMERS OF S-(1,2-DICHLOROVINYL-(3-14C)CYSTEINE: THEIR USE WITH ESCHERICHIA COLI B. KLUBES P; SCHULTZE MO Biochim Biophys Acta; 1963 Oct; 78():114-25. PubMed ID: 14098164 [No Abstract] [Full Text] [Related]
32. Two enzymic mechanisms for the methylation of homocysteine by extracts of Escherichia coli. Foster MA; Tejerina G; Guest JR; Woods DD Biochem J; 1964 Sep; 92(3):476-88. PubMed ID: 5319971 [No Abstract] [Full Text] [Related]
33. Catabolism of betaine and its relationship to cobalamin overproduction. White RF; Demain AL Biochim Biophys Acta; 1971 Apr; 237(1):112-9. PubMed ID: 5578572 [No Abstract] [Full Text] [Related]
34. Fragmented E. coli methionine tRNA f as methyl acceptor for rat liver tRNA methylase: alteration of the site of methylation by the conformational change of tRNA structure resulting from fragmentation. Kuchino Y; Seno T; Nishimura S Biochem Biophys Res Commun; 1971 May; 43(3):476-83. PubMed ID: 4935191 [No Abstract] [Full Text] [Related]
35. The role of shikimic acid in the biosynthesis of vitamin K2. Cox GB; Gibson F Biochem J; 1966 Jul; 100(1):1-6. PubMed ID: 5337721 [TBL] [Abstract][Full Text] [Related]
36. Altered folate metabolism in a vitamin B 12-methionine auxotroph. Dickerman H; Weissbach H Biochem Biophys Res Commun; 1964 Aug; 16(6):593-9. PubMed ID: 5332857 [No Abstract] [Full Text] [Related]
37. The biosynthesis of vitamin B 12 : a study by 13 C magnetic resonance spectroscopy. Brown CE; Katz JJ; Shemin D Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2585-8. PubMed ID: 4506779 [TBL] [Abstract][Full Text] [Related]
38. Substrate specificity of ribosomal peptidyl transferase. II. 2'(3')-O-aminoacyl nucleosides as acceptors of the peptide chain in the fragment reaction. Cerná J; Rychlík I; Zemlicka J; Chládek S Biochim Biophys Acta; 1970 Mar; 204(1):203-9. PubMed ID: 4908647 [No Abstract] [Full Text] [Related]
39. INTERRELATIONS BETWEEN TWO PATHWAYS OF METHIONINE BIOSYNTHESIS IN AEROBACTER AEROGENES. MORNINGSTAR JF; KISLIUK RL J Gen Microbiol; 1965 Apr; 39():43-51. PubMed ID: 14330757 [No Abstract] [Full Text] [Related]
40. Nucleotide sequence specificities of guanylate residue-specific tRNA methylases from rat liver. Kuchino Y; Nishimura S Biochem Biophys Res Commun; 1970 Jul; 40(2):306-13. PubMed ID: 4919960 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]