These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 5340730)

  • 21. [Immunochemical and molecular biological characteristics of dysentery phages].
    Zamchuk LA; Magradze NM
    Vopr Virusol; 1976; (2):161-6. PubMed ID: 779271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward a metabolic interpretation of genetic recombination of E. coli and its phages.
    Clark AJ
    Annu Rev Microbiol; 1971; 25():437-64. PubMed ID: 4949037
    [No Abstract]   [Full Text] [Related]  

  • 23. The fate of parental DNA of bacteriophage T2 in crosses with bacteriophage T4.
    Okker RJ
    Biochim Biophys Acta; 1974 Jun; 353(1):36-44. PubMed ID: 4600969
    [No Abstract]   [Full Text] [Related]  

  • 24. In vivo production of an RNA-DNA copolymer after infection of Escherichia coli by bacteriophage T4.
    Buckley PJ; Kosturko LD; Kozinski AW
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3165-9. PubMed ID: 4564205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous initiation of synthesis of bacteriophage T4 DNA and of deoxyribonucleotides.
    Chiu CS; Tomich PK; Greenberg GR
    Proc Natl Acad Sci U S A; 1976 Mar; 73(3):757-61. PubMed ID: 1062786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA packaging and the pathway of bacteriophage T4 head assembly.
    Hsiao CL; Black LW
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3652-6. PubMed ID: 269421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The relation between breakdown of superinfecting virus deoxyribonucleic acid and temporal exclusion induced by T4 and T5 bacteriophages.
    Fielding PE; Lunt MR
    J Gen Virol; 1970 Mar; 6(3):333-42. PubMed ID: 4906849
    [No Abstract]   [Full Text] [Related]  

  • 28. The absolute sign of certain phase-shift mutants in bacteriophage T4.
    Crick FH; Brenner S
    J Mol Biol; 1967 Jun; 26(2):361-3. PubMed ID: 6034781
    [No Abstract]   [Full Text] [Related]  

  • 29. A mutant of bacteriophage T4 defective in alpha-glucosyl transferase.
    Hosoda J
    Biochem Biophys Res Commun; 1967 May; 27(3):294-8. PubMed ID: 6035109
    [No Abstract]   [Full Text] [Related]  

  • 30. Mutagenic DNA polymerase.
    Speyer JF
    Biochem Biophys Res Commun; 1965 Oct; 21(1):6-8. PubMed ID: 5865492
    [No Abstract]   [Full Text] [Related]  

  • 31. Identity of N2 ochre nonsense mutants.
    Brenner S; Kaplan S; Stretton AO
    J Mol Biol; 1966 Aug; 19(2):574-5. PubMed ID: 5969079
    [No Abstract]   [Full Text] [Related]  

  • 32. Phage-encoded ten-eleven translocation dioxygenase (TET) is active in C5-cytosine hypermodification in DNA.
    Burke EJ; Rodda SS; Lund SR; Sun Z; Zeroka MR; O'Toole KH; Parker MJ; Doshi DS; Guan C; Lee YJ; Dai N; Hough DM; Shnider DA; CorrĂȘa IR; Weigele PR; Saleh L
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34155108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How WWII and the old Turkish mass standard led a Greek to a scientific career.
    Georgopoulos C
    Bacteriophage; 2016; 6(1):e1093065. PubMed ID: 27994946
    [No Abstract]   [Full Text] [Related]  

  • 34. CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4.
    Yaung SJ; Esvelt KM; Church GM
    PLoS One; 2014; 9(6):e98811. PubMed ID: 24886988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highlights of the DNA cutters: a short history of the restriction enzymes.
    Loenen WA; Dryden DT; Raleigh EA; Wilson GG; Murray NE
    Nucleic Acids Res; 2014 Jan; 42(1):3-19. PubMed ID: 24141096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence of participation of McrB(S) in McrBC restriction in Escherichia coli K-12.
    Beary TP; Braymer HD; Achberger EC
    J Bacteriol; 1997 Dec; 179(24):7768-75. PubMed ID: 9401036
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Restriction in vivo. V. Introduction of SOS functions in Escherichia coli by restricted T4 phage DNA, and alleviation of restriction by SOS functions.
    Dharmalingam K; Goldberg EB
    Mol Gen Genet; 1980 Apr; 178(1):51-8. PubMed ID: 6991879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Host-controlled restriction of T-even bacteriophages: relation of endonuclease I and T-even-induced nucleases to restriction.
    Molholt B; Fraser D
    J Virol; 1968 Apr; 2(4):313-9. PubMed ID: 4911845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of phage-specific alpha- and beta-glucosyl transferases directed by T-even DNA in vitro.
    Gold LM; Schweiger M
    Proc Natl Acad Sci U S A; 1969 Mar; 62(3):892-8. PubMed ID: 4895217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Template properties of glucose-deficient T-even bacteriophage DNA.
    Cox GS; Conway TW
    J Virol; 1973 Dec; 12(6):1279-87. PubMed ID: 4586774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.