These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 5343201)

  • 1. Postnatal development of the EEG in the dog. II. Development of electrocortical activity.
    Fox MW
    J Small Anim Pract; 1967 Feb; 8(2):77-107. PubMed ID: 5343201
    [No Abstract]   [Full Text] [Related]  

  • 2. Postnatal development of the EEG in the dog. 3. Summary and discussion of development of canine EEG.
    Fox MW
    J Small Anim Pract; 1967 Feb; 8(2):109-12. PubMed ID: 6044494
    [No Abstract]   [Full Text] [Related]  

  • 3. Postnatal development of the EEG in the dog. I. Introduction and EEG techniques.
    Fox MW
    J Small Anim Pract; 1967 Feb; 8(2):71-6. PubMed ID: 5343200
    [No Abstract]   [Full Text] [Related]  

  • 4. Electroencephalography in dogs with epilepsy: similarities between human and canine findings.
    Berendt M; Høgenhaven H; Flagstad A; Dam M
    Acta Neurol Scand; 1999 May; 99(5):276-83. PubMed ID: 10348156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postnatal development of semitendinosus muscle in the dog.
    Latorre R; Gil F; Ramirez G; Vazquez JM; Lopez-Albors O; Moreno F
    Anat Embryol (Berl); 1993 Oct; 188(4):401-7. PubMed ID: 7506503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The postnatal development of neocortical neurons in the dog.
    Fox MW; Inman OR; Himwich WA
    J Comp Neurol; 1966 Jun; 127(2):199-206. PubMed ID: 5962684
    [No Abstract]   [Full Text] [Related]  

  • 7. Electroencephalography findings in healthy and Finnish Spitz dogs with epilepsy: visual and background quantitative analysis.
    Jeserevics J; Viitmaa R; Cizinauskas S; Sainio K; Jokinen TS; Snellman M; Bellino C; Bergamasco L
    J Vet Intern Med; 2007; 21(6):1299-306. PubMed ID: 18196740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Increase and diffusion the electrocortical response to auditory stimuli in the dog during hypothermia].
    BENOIT O; JOUVET M; TANCHE M
    J Physiol (Paris); 1956; 48(3):391-2. PubMed ID: 13346506
    [No Abstract]   [Full Text] [Related]  

  • 9. A study on cortical spindle activity in dog. Two types of recovery of electrocortical activity after electric silence provoked by asphyxia.
    Sobieszek A
    Bull Acad Pol Sci Biol; 1966; 14(6):447-50. PubMed ID: 5954989
    [No Abstract]   [Full Text] [Related]  

  • 10. Early Electroencephalography Suppression and Postnatal Morbidities Correlate with Cerebral Volume at Term-Equivalent Age in Very Preterm Infants.
    Wikström S; Hövel H; Hansen Pupp I; Fellman V; Hüppi PS; Ley D; Hellström-Westas L
    Neonatology; 2018; 113(1):15-20. PubMed ID: 28934743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative evaluation of postnatal bone growth in the auditory ossicles of the dog.
    Roberto M
    Ann Otol Rhinol Laryngol; 1978; 87(3 Pt 1):370-9. PubMed ID: 655576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal development of the dog pineal gland. Light microscopy.
    Calvo J; Boya J; García-Mauriño A; López Carbonell A
    Histol Histopathol; 1990 Jan; 5(1):31-6. PubMed ID: 2134353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of the dog electroencephalogram (EEG) in safety pharmacology to evaluate proconvulsant risk.
    Dürmüller N; Guillaume P; Lacroix P; Porsolt RD; Moser P
    J Pharmacol Toxicol Methods; 2007; 56(2):234-8. PubMed ID: 17587602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Telemetry video-electroencephalography (EEG) in rats, dogs and non-human primates: methods in follow-up safety pharmacology seizure liability assessments.
    Bassett L; Troncy E; Pouliot M; Paquette D; Ascah A; Authier S
    J Pharmacol Toxicol Methods; 2014; 70(3):230-40. PubMed ID: 25065541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of the effects of morphine on electrocortical recruitment in the cat and dog.
    Mizoguchi K; Mitchell CL
    J Pharmacol Exp Ther; 1969 Mar; 166(1):134-45. PubMed ID: 5776016
    [No Abstract]   [Full Text] [Related]  

  • 16. Hippocampal EEG and behaviour in dog. II. Hippocampal EEG correlates with elementary motor acts.
    Arnolds DE; Lopes da Silva FH; Aitink JW; Kamp A
    Electroencephalogr Clin Neurophysiol; 1979 May; 46(5):571-80. PubMed ID: 88345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal development of bile secretory physiology in the dog.
    Tavoloni N; Jones MJ; Berk PD
    J Pediatr Gastroenterol Nutr; 1985 Apr; 4(2):256-67. PubMed ID: 3989625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The postnatal development of short hollow bones in dogs].
    Roos H; Schebitz H; Vollmerhaus B
    Berl Munch Tierarztl Wochenschr; 1979 Sep; 92(17):329-35. PubMed ID: 533524
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparative study of cardiovascular, neurological and metabolic side effects of 8 narcotics in dogs. Pethidine, piritramide, morphine, phenoperidine, fentanyl, R 39 209, sufentanil, R 34 995. II. Comparative study on the epileptoid activity of the narcotics used in high and massive doses in curarised and mechanically ventilated dogs.
    de Castro J; Van de Water A; Wouters L; Xhonneux R; Reneman R; Kay B
    Acta Anaesthesiol Belg; 1979 Mar; 30(1):55-69. PubMed ID: 474064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THE COMPARATIVE DEVELOPMENT OF THE EEG IN RABBIT, CAT AND DOG.
    PETERSEN J; DIPERRI R; HIMWICH WA
    Electroencephalogr Clin Neurophysiol; 1964 Nov; 17():557-63. PubMed ID: 14229857
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.