These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 5344100)

  • 21. Cystine catabolism in mycelia of Microsporum gypseum, a dermatophytic fungus.
    Kunert J; Trüper HG
    Arch Microbiol; 1986 Jul; 145(2):181-6. PubMed ID: 3767570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation.
    Santos AA; Venceslau SS; Grein F; Leavitt WD; Dahl C; Johnston DT; Pereira IA
    Science; 2015 Dec; 350(6267):1541-5. PubMed ID: 26680199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of total sulfite in wine. Zone electrophoresis-isotachophoresis quantitation of sulfate on a chip after an in-sample oxidation of total sulfite.
    Masár M; Danková M; Olvecká E; Stachurová A; Kaniansky D; Stanislawski B
    J Chromatogr A; 2005 Aug; 1084(1-2):101-7. PubMed ID: 16114242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioenergetics of the alkaliphilic sulfate-reducing bacterium Desulfonatronovibrio hydrogenovorans.
    Sydow U; Wohland P; Wolke I; Cypionka H
    Microbiology (Reading); 2002 Mar; 148(Pt 3):853-860. PubMed ID: 11882721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulfonate-sulfur utilization involves a portion of the assimilatory sulfate reduction pathway in Escherichia coli.
    Uria-Nickelsen MR; Leadbetter ER; Godchaux W
    FEMS Microbiol Lett; 1994 Oct; 123(1-2):43-8. PubMed ID: 7988897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution.
    Fry B; Ruf W; Gest H; Hayes JM
    Isot Geosci; 1988; 73():205-10. PubMed ID: 11538336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli.
    Kawano Y; Onishi F; Shiroyama M; Miura M; Tanaka N; Oshiro S; Nonaka G; Nakanishi T; Ohtsu I
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):6879-6889. PubMed ID: 28756590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic and accumulation studies in sulfite-requiring mutants of Aspergillus nidulans.
    Gravel RA; Käfer E
    Can J Genet Cytol; 1970 Dec; 12(4):831-40. PubMed ID: 4934393
    [No Abstract]   [Full Text] [Related]  

  • 29. Yeast sulfate-reducing system. I. Reduction of sulfate to sulfite.
    WILSON LG; ASAHI T; BANDURSKI RS
    J Biol Chem; 1961 Jun; 236():1822-9. PubMed ID: 13785690
    [No Abstract]   [Full Text] [Related]  

  • 30. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase.
    Hallenbeck PC; Clark MA; Barrett EL
    J Bacteriol; 1989 Jun; 171(6):3008-15. PubMed ID: 2656637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism.
    Kohl JB; Mellis AT; Schwarz G
    Br J Pharmacol; 2019 Feb; 176(4):554-570. PubMed ID: 30088670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Oxidation of sulfite to sulfate by oat roots].
    FROMAGEOT P; VAILLANT R; PEREZ-MILAN H
    Biochim Biophys Acta; 1960 Oct; 44():77-85. PubMed ID: 13702220
    [No Abstract]   [Full Text] [Related]  

  • 33. COINCIDENT REPRESSION OF THE REDUCTION OF 3'-PHOSPHOADENOSINE 5'-PHOSPHOSULFATE, SULFITE, AND THIOSULFATE IN THE CYSTEINE PATHWAY OF SALMONELLA TYPHIMURIUM.
    DREYFUSS J; MONTY KJ
    J Biol Chem; 1963 Nov; 238():3781-3. PubMed ID: 14109220
    [No Abstract]   [Full Text] [Related]  

  • 34. [Characteristics of the sulfate requirement of propionic acid bacteria].
    Charakhch'ian IA; Vorob'eva LI
    Mikrobiologiia; 1984; 53(1):38-42. PubMed ID: 6708841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Sulfite as an intermediate in the reduction of sulfate by Desulfovibrio desulfuricans].
    MILLET J
    C R Hebd Seances Acad Sci; 1955 Jan; 240(2):253-5. PubMed ID: 14352481
    [No Abstract]   [Full Text] [Related]  

  • 36. Multiple mutations in cysA 14 MUTANTS OF Bacillus subtilis.
    Kane JF; Goode RL; Wainscott J
    J Bacteriol; 1975 Jan; 121(1):204-11. PubMed ID: 803951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolism of sulfur-containing amino acids in the dermatophyte Microsporum gypseum. II. Acidic amino acid derivatives.
    Kunert J
    J Basic Microbiol; 1985; 25(2):111-8. PubMed ID: 3925121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative aspects of utilization of sulfonate and other sulfur sources by Escherichia coli K12.
    Uria-Nickelsen MR; Leadbetter ER; Godchaux W
    Arch Microbiol; 1994; 161(5):434-8. PubMed ID: 8042907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of thiosulfate in bisulfite reduction as catalyzed by Desulfovibrio vulgaris.
    Findley JE; Akagi JM
    J Bacteriol; 1970 Sep; 103(3):741-4. PubMed ID: 5474884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilized mixed sulfate-reducing bacteria.
    Selvaraj PT; Little MH; Kaufman EN
    Biotechnol Prog; 1997; 13(5):583-9. PubMed ID: 9376112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.