These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 534503)

  • 21. Natural structural variation in enzymes as a tool in the study of mechanism exemplified by a comparison of the catalytic-site structure and characteristics of cathepsin B and papain. pH-dependent kinetics of the reactions of cathepsin B from bovine spleen and from rat liver with a thiol-specific two-protonic-state probe (2,2'-dipyridyl disulphide) and with a specific synthetic substrate (N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide).
    Willenbrock F; Brocklehurst K
    Biochem J; 1984 Sep; 222(3):805-14. PubMed ID: 6534384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of the active site of papain with fluorescent probes.
    Allen G; Lowe G
    Biochem J; 1973 Aug; 133(4):679-86. PubMed ID: 4748829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of cathepsins B and H by covalent chromatography and characterization of their catalytic sites by reaction with a thiol-specific two-protonic-state reactivity probe. Kinetic study of cathepsins B and H extending into alkaline media and a rapid spectroscopic titration of cathepsin H at pH 3-4.
    Willenbrock F; Brocklehurst K
    Biochem J; 1985 Apr; 227(2):511-9. PubMed ID: 4004778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis.
    Topham CM; Salih E; Frazao C; Kowlessur D; Overington JP; Thomas M; Brocklehurst SM; Patel M; Thomas EW; Brocklehurst K
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):79-92. PubMed ID: 1741760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of chymopapain M the late-eluted chymopapain deduced by comparative modelling techniques and active-centre characteristics determined by pH-dependent kinetics of catalysis and reactions with time-dependent inhibitors: the Cys-25/His-159 ion-pair is insufficient for catalytic competence in both chymopapain M and papain.
    Thomas MP; Topham CM; Kowlessur D; Mellor GW; Thomas EW; Whitford D; Brocklehurst K
    Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):805-20. PubMed ID: 8010964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A marked gradation in active-centre properties in the cysteine proteinases revealed by neutral and anionic reactivity probes. Reactivity characteristics of the thiol groups of actinidin, ficin, papain and papaya peptidase A towards 4,4'-dipyridyl disulphide and 5,5'-dithiobis-(2-nitrobenzoate) dianion.
    Brocklehurst K; Mushiri SM; Patel G; Willenbrock F
    Biochem J; 1983 Mar; 209(3):873-9. PubMed ID: 6347181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactivities of the various protonic states in the reactions of papain and of L-cysteine with 2,2'- and with 4,4'- dipyridyl disulphide: evidence for nucleophilic reactivity in the un-ionized thiol group of the cysteine-25 residue of papain occasioned by its interaction with the histidine-159-asparagine-175 hydrogen-bonded system.
    Brocklehurst K; Little G
    Biochem J; 1972 Jun; 128(2):471-4. PubMed ID: 5084800
    [No Abstract]   [Full Text] [Related]  

  • 28. Generation of nucleophilic character in the Cys25/His159 ion pair of papain involves Trp177 but not Asp158.
    Gul S; Hussain S; Thomas MP; Resmini M; Verma CS; Thomas EW; Brocklehurst K
    Biochemistry; 2008 Feb; 47(7):2025-35. PubMed ID: 18225918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of fully active ficin from Ficus glabrata by covalent chromatography and characterization of its active centre by using 2,2'-depyridyl disulphide as a reactivity probe.
    Malthouse JP; Brocklehurst K
    Biochem J; 1976 Nov; 159(2):221-34. PubMed ID: 11777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of hydrogen-bonding and enantiomeric P2-S2 hydrophobic contacts in dynamic aspects of molecular recognition by papain.
    Patel M; Kayani IS; Templeton W; Mellor GW; Thomas EW; Brocklehurst K
    Biochem J; 1992 Nov; 287 ( Pt 3)(Pt 3):881-9. PubMed ID: 1445247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A general framework of cysteine-proteinase mechanism deduced from studies on enzymes with structurally different analogous catalytic-site residues Asp-158 and -161 (papain and actinidin), Gly-196 (cathepsin B) and Asn-165 (cathepsin H). Kinetic studies up to pH 8 of the hydrolysis of N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide catalysed by cathepsin B and of L-arginine 2-naphthylamide catalysed by cathepsin H.
    Willenbrock F; Brocklehurst K
    Biochem J; 1985 Apr; 227(2):521-8. PubMed ID: 3890831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Propapain and its conversion to papain: a new type of zymogen activation mechanism involving intramolecular thiol-disulphide interchange.
    Brocklehurst K; Kierstan MP
    Nat New Biol; 1973 Apr; 242(119):167-70. PubMed ID: 4512754
    [No Abstract]   [Full Text] [Related]  

  • 33. Clarification of the pH-dependent kinetic behaviour of papain by using reactivity probes and analysis of alkylation and catalysed acylation reactions in terms of multihydronic state models: implications for electrostatics calculations and interpretation of the consequences of site-specific mutations such as Asp-158-Asn and Asp-158-Glu.
    Mellor GW; Patel M; Thomas EW; Brocklehurst K
    Biochem J; 1993 Aug; 294 ( Pt 1)(Pt 1):201-10. PubMed ID: 8103322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reactions of papain and of low-molecular-weight thiols with some aromatic disulphides. 2,2'-Dipyridyl disulphide as a convenient active-site titrant for papain even in the presence of other thiols.
    Brocklehurst K; Little G
    Biochem J; 1973 May; 133(1):67-80. PubMed ID: 4721623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ionization characteristics and chemical influences of aspartic acid residue 158 of papain and caricain determined by structure-related kinetic and computational techniques: multiple electrostatic modulators of active-centre chemistry.
    Noble MA; Gul S; Verma CS; Brocklehurst K
    Biochem J; 2000 Nov; 351 Pt 3(Pt 3):723-33. PubMed ID: 11042128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A kinetic method for the study of solvent environments of thiol groups in proteins involving the use of a pair of isomeric reactivity probes and a differential solvent effect. Investigation of the active centre of ficin by using 2,2'- and 4,4'- dipyridyl disulphides as reactivity probes.
    Malthouse JP; Brocklehurst K
    Biochem J; 1980 Jan; 185(1):217-22. PubMed ID: 6990917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical evidence for the pH-dependent control of ion-pair geometry in cathepsin B. Benzofuroxan as a reactivity probe sensitive to differences in the mutual disposition of the thiolate and imidazolium components of cysteine proteinase catalytic sites.
    Willenbrock F; Brocklehurst K
    Biochem J; 1986 Aug; 238(1):103-7. PubMed ID: 3800926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A thiol-labelling reagent and reactivity probe containing electrophilic mercury and a chromophoric leaving group.
    Baines BS; Brocklehurst K
    Biochem J; 1979 Jun; 179(3):701-4. PubMed ID: 38780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature-dependences of the kinetics of reactions of papain and actinidin with a series of reactivity probes differing in key molecular recognition features.
    Gul S; Mellor GW; Thomas EW; Brocklehurst K
    Biochem J; 2006 May; 396(1):17-21. PubMed ID: 16445383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence that the lack of high catalytic activity of thiolsubtilisin towards specific substrates may be due to an inappropriately located proton-distribution system. Demonstration of highly nucleophilic character of the thiol group of thiolsubtilisin in the catalytically relevant ionization state of the active centre by use of a two-protonic-state reactivity probe.
    Brocklehurst K; Malthouse JP
    Biochem J; 1981 Mar; 193(3):819-23. PubMed ID: 6272719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.