These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 534504)
61. Primary structure at the active sites of beef and rabbit liver aldolases. Ting SM; Lai CY; Horecker BL Arch Biochem Biophys; 1971 Jun; 144(2):476-84. PubMed ID: 5569895 [No Abstract] [Full Text] [Related]
62. The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments. Dowling LM; Crewther WG; Inglis AS Biochem J; 1986 Jun; 236(3):695-703. PubMed ID: 2431679 [TBL] [Abstract][Full Text] [Related]
63. Evidence for formation of a rabbit liver aldolase--rabbit liver fructose-1,6-bisphosphatase complex. MacGregor JS; Singh VN; Davoust S; Melloni E; Pontremoli S; Horecker BL Proc Natl Acad Sci U S A; 1980 Jul; 77(7):3889-92. PubMed ID: 6253999 [TBL] [Abstract][Full Text] [Related]
64. The amino acid sequence of the tryptic peptides from actinidin, a proteolytic enzyme from the fruit of Actinidia chinensis. Carne A; Moore CH Biochem J; 1978 Jul; 173(1):73-83. PubMed ID: 687380 [TBL] [Abstract][Full Text] [Related]
65. Amino-acid sequence homology in the muscle aldolases from sturgeons of different species. Gibbons I; Perham RN; Anderson PJ Nat New Biol; 1972 Aug; 238(84):173-5. PubMed ID: 4505985 [No Abstract] [Full Text] [Related]
66. Primary structure of the major beta-chain of rat haemoglobins. Garrick LM; Sloan RL; Ryan TW; Klonowski TJ; Garrick MD Biochem J; 1978 Jul; 173(1):321-330. PubMed ID: 687373 [TBL] [Abstract][Full Text] [Related]
67. Concentration and partitioning of intermediates in the fructose bisphosphate aldolase reaction. Comparison of the muscle and liver enzymes. Rose IA; Warms JV; Kuo DJ J Biol Chem; 1987 Jan; 262(2):692-701. PubMed ID: 3805004 [TBL] [Abstract][Full Text] [Related]
68. N-terminal amino acid sequence of wheat proteins that lack phenylalanine and histidine residues. Redman DG Biochem J; 1976 Apr; 155(1):193-5. PubMed ID: 938475 [TBL] [Abstract][Full Text] [Related]
69. Amino acid sequence of cytochrome c from Tetrahymena pyriformis Phenoset A. Tarr GE; Fitch WM Biochem J; 1976 Nov; 159(2):193-9. PubMed ID: 187170 [TBL] [Abstract][Full Text] [Related]
70. Primary structure of the calcium ion-transporting adenosine triphosphatase from rabbit skeletal sarcoplasmic reticulum. Some peptic, thermolytic, tryptic and staphylococcal-proteinase peptides. Allen G; Bottomley RC; Trinnaman BJ Biochem J; 1980 Jun; 187(3):577-89. PubMed ID: 6234880 [TBL] [Abstract][Full Text] [Related]
71. The isolation, characterization and partial sequences of the chicken erythrocyte non-histone chromosomal proteins HMG14 and HMG17. Comparison with the homologous calf thymus proteins. Walker JM; Johns EW Biochem J; 1980 Feb; 185(2):383-6. PubMed ID: 7396821 [TBL] [Abstract][Full Text] [Related]
72. The complete amino acid sequence of three alcohol dehydrogenase alleloenzymes (AdhN-11, AdhS and AdhUF) from the fruitfly Drosophila melanogaster. Thatcher DR Biochem J; 1980 Jun; 187(3):875-83. PubMed ID: 6821373 [TBL] [Abstract][Full Text] [Related]
73. The amino acid sequence of cytochrome c' from the purple sulphur bacterium Chromatium vinosum. Ambler RP; Daniel M; Meyer TE; Bartsch RG; Kamen MD Biochem J; 1979 Mar; 177(3):819-23. PubMed ID: 220951 [TBL] [Abstract][Full Text] [Related]
74. The complete nucleotide sequence for rabbit muscle aldolase A messenger RNA. Tolan DR; Amsden AB; Putney SD; Urdea MS; Penhoet EE J Biol Chem; 1984 Jan; 259(2):1127-31. PubMed ID: 6546378 [TBL] [Abstract][Full Text] [Related]
75. The primary structures of Pseudomonas AM1 amicyanin and pseudoazurin. Two new sequence classes of blue copper proteins. Ambler RP; Tobari J Biochem J; 1985 Dec; 232(2):451-7. PubMed ID: 4091802 [TBL] [Abstract][Full Text] [Related]
76. Structural Similarities between Spinach Chloroplast and Cytosolic Class I Fructose 1,6-Bisphosphate Aldolases : Immunochemical and Amino-Terminal Amino Acid Sequence Analysis. Marsh JJ; Wilson KJ; Lebherz HG Plant Physiol; 1989 Dec; 91(4):1393-401. PubMed ID: 16667191 [TBL] [Abstract][Full Text] [Related]
77. Limited proteolysis of liver and muscle aldolases: effects of subtilisin, cathepsin B, and Staphylococcus aureus protease. Hannappel E; MacGregor JS; Davoust S; Horecker BL Arch Biochem Biophys; 1982 Mar; 214(1):293-8. PubMed ID: 7044315 [No Abstract] [Full Text] [Related]
78. Identification of conserved promoter elements for aldB and isozyme specific residues in aldolase B. Berardini TZ; Amsden AB; Penhoet EE; Tolan DR Comp Biochem Physiol B Biochem Mol Biol; 1999 Jan; 122(1):53-61. PubMed ID: 10327593 [TBL] [Abstract][Full Text] [Related]
79. Photoinactivation of aldolases by pyridoxal phosphate and its analogues. Davis LC; Ribereau-Gayon G; Horecker BL Proc Natl Acad Sci U S A; 1971 Feb; 68(2):416-9. PubMed ID: 5277095 [TBL] [Abstract][Full Text] [Related]
80. Characterization, cloning, and evolutionary history of the chloroplast and cytosolic class I aldolases of the red alga Galdieria sulphuraria. Gross W; Lenze D; Nowitzki U; Weiske J; Schnarrenberger C Gene; 1999 Apr; 230(1):7-14. PubMed ID: 10196468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]